Differential mRNA display was carried out to find genes that are differentially regulated in the brain of a rat strain with absence epilepsy, the genetic absence epilepsy rats from Strasbourg (GAERS). Among the 32 differentially displayed cDNA fragments actually cloned and sequenced, one shows 100% identity with the rat heavy chain ferritin (H-ferritin) mRNA. Northern blot analysis confirmed the up-regulation of the H-ferritin mRNA. Using dot blotting, a 40% increase in expression was reported in the subcortical forebrain of the adult GAERS, while cortex, brain stem, and cerebellum appeared unmodified. This change was not observed in the brain of 25-day-old rats, an age at which the epileptic phenotype is not present. By in situ hybridization, the enhanced expression was localized in the hippocampus. The increase in mRNA encoding H-ferritin was not immunodetected at the protein level by Western blotting. These results are not apparently related to the neural substrate of SWD or to the distribution of local increase in glucose metabolism previously described in the GAERS. It is hypothesized that the up-regulation of the H-ferritin mRNA is part of a mechanism protecting the hippocampus, a seizure-prone area, against a possible overactivation during absence seizures.

Download full-text PDF

Source
http://dx.doi.org/10.1006/exnr.2000.7303DOI Listing

Publication Analysis

Top Keywords

absence epilepsy
12
h-ferritin mrna
12
mrna encoding
8
heavy chain
8
up-regulation h-ferritin
8
mrna
6
increased expression
4
expression mrna
4
encoding ferritin
4
ferritin heavy
4

Similar Publications

Interplay of epilepsy and long-term potentiation: implications for memory.

Front Neurosci

January 2025

Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.

The interplay between long-term potentiation (LTP) and epilepsy represents a crucial facet in understanding synaptic plasticity and memory within neuroscience. LTP, a phenomenon characterized by a sustained increase in synaptic strength, is pivotal in learning and memory processes, particularly in the hippocampus. This review delves into the intricate relationship between LTP and epilepsy, exploring how alterations in synaptic plasticity mechanisms akin to those seen in LTP contribute to the hyperexcitable state of epilepsy.

View Article and Find Full Text PDF

Objective: To observe and measure the morphological and temporal evolutionary features of the hypersynchronous (HYP) pattern in the mesial temporal seizure.

Methods: The HYP patterns during preictal and interictal states of 16 mesial temporal epileptic patients were analyzed. The wave components of the HYP transients were firstly observed and measured.

View Article and Find Full Text PDF

Mutations in TSC1 or TSC2 in axons induce tuberous sclerosis complex. Neurological manifestations mainly include epilepsy and autism spectrum disorder (ASD). ASD is the presenting symptom (25-50% of patients).

View Article and Find Full Text PDF

Mitochondrial disease and epilepsy in children.

Front Neurol

January 2025

Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China.

Mitochondria is the cell's powerhouse. Mitochondrial disease refers to a group of clinically heterogeneous disorders caused by dysfunction in the mitochondrial respiratory chain, often due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) that encodes mitochondrial proteins. This dysfunction can lead to a variety of clinical phenotypes, particularly affecting organs with high energy demands, such as the brain and muscles.

View Article and Find Full Text PDF

Background: Lipids are vital biomolecules involved in the formation of various biofilms. Seizures can cause changes in lipid metabolism in the brain. In-depth studies at multiple levels are urgently needed to elucidate lipid composition, distribution, and metabolic pathways in the brain after seizure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!