Objective: We administered pyrazinamide (PZA) and probenecid (PB) --two well-known modulators of urate transport via the proximal tubules - to evaluate their impact on urate transport through the peritoneal membrane and to clarify mechanisms affecting peritoneal transport.

Setting: A continuous ambulatory peritoneal dialysis (CAPD) unit in 2nd Hospital of IKA (Social Services Institute), Greece.

Patients: In 20 stable CAPD patients, on the study day, a 4-hour, 2-L, 1.36% glucose exchange was performed (control exchange). Pyrazinamide 3 g was given orally and another identical exchange was performed (study exchange). The same protocol was repeated with 2 g PB. KtN, peritoneal clearances of urea, creatinine, and urate for each exchange, and mass transfer area coefficients (MTAC) for the three solutes and their dialysate-to-plasma concentration (D/P) ratios were used to estimate peritoneal transport.

Results: Administration of PZA resulted in decreased clearances and MTAC values for the three solutes. The D/P ratio decreased significantly only for urate, indicating a more intense influence of PZA on urate. After PB administration, clearances of urea, creatinine, and urate were increased. MTAC and DIP ratio increased significantly only for urate (p < 0.05), demonstrating an action similar to that exerted on renal tubules.

Conclusions: These findings provide evidence that unrestricted diffusion is not the only transport mechanism in the case of urate, and demonstrate the existence of an active mechanism in peritoneal urate transport with a reabsorptive and, probably, a secretive component that resembles that of renal tubule urate transport. Attention should be given in the case of CAPD patients undergoing antituberculous (PZA) treatment: it might have a negative impact on urea, creatinine, and urate peritoneal transport rates.

Download full-text PDF

Source

Publication Analysis

Top Keywords

urate transport
20
urate
12
urea creatinine
12
creatinine urate
12
peritoneal
9
peritoneal urate
8
continuous ambulatory
8
ambulatory peritoneal
8
peritoneal dialysis
8
capd patients
8

Similar Publications

SLC17A3 localized to the apical membrane of the renal proximal tubules has been implicated in the urinary excretion of drugs and endogenous/exogenous metabolites transported into the tubules by OAT1 and OAT3. Because SLC17A3 mediates the facilitated diffusion of organic anions, which requires a sensitive and rapid assay, no system has been established to evaluate its transport activity in mammalian cells. In this study, we demonstrated that the exposure of cells expressing click beetle luciferase (bLuc) and SLC17A3 to D-luciferin produces marked bioluminescence, which enables the evaluation of SLC17A3 function.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are known for their cardiovascular benefits, but their impact on serum uric acid levels is not well understood. This study evaluates the hypouricemic effects of SGLT2is and their potential cardiovascular implications.

Methods: A network meta-analysis was performed, including 56 studies (16,788 participants) contributing data to the meta-analysis.

View Article and Find Full Text PDF

The Gut Microbiome in Hyperuricemia and Gout.

Arthritis Rheumatol

January 2025

Assistant Professor of Pathology and of Microbiology and Microbiology and Immunology, Stanford University, Stanford, CA, 94305.

Humans develop hyperuricemia via decreased urate elimination and excess urate production, consequently promoting monosodium urate crystal deposition and incident gout. Normally, approximately two thirds of urate elimination is renal. However, chronic kidney disease (CKD) and other causes of decreased renal urate elimination drive hyperuricemia in most with gout.

View Article and Find Full Text PDF

Background: Storage of packed red blood cells (RBCs) for transfusion leads to biochemical and morphological changes, increasing hemolysis risk. Urate levels in blood bags at donation contribute to the molecular heterogeneity and hemolytic propensity of stored RBCs. However, studies to date have been underpowered to investigate at scale the contribution of donor demographics and genetics to the heterogeneity in urate levels across donations.

View Article and Find Full Text PDF

As the extension of the egg-laying cycle, heightened energy and lipid metabolism cause excessive lipid accumulation, resulting in rapid decline in laying performance during the late laying period. Bile acids (BAs), synthesized from cholesterol in the liver, are potent metabolic and immune signaling molecules involved in lipid metabolism and the regulation of energy homeostasis. However, under different dietary protein levels, the role of BAs on hepatic lipid metabolism of laying hens at the late phase remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!