A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential alterations of NF-kappaB to oxidative stress in primary basal forebrain cultures. | LitMetric

Differential alterations of NF-kappaB to oxidative stress in primary basal forebrain cultures.

Int J Dev Neurosci

Department of Human Biological Chemistry, The University of Texas Medical Branch at Galveston, Room 436, Gail Borden Bldg, 301 University Blvd, Galveston, TX 77555-0652, USA.

Published: April 2000

Oxidative stress has been linked to neuronal cell death resulting from either acute insults due to ischemia, trauma, excitotoxicity, or chronic neurodegenerative diseases. Cholinergic basal forebrain neurons (CBFNs) compete for nerve growth factor (NGF) synthesized in the hippocampus and cortex via retrograde transport. NGF affects CBFN survival and cholinergic function via activation of the NF-kappaB transcription factor and this signaling pathway appears to be impaired in aged rats. Here, we demonstrate that activation of NF-kappaB in basal forebrain primary culture via treatment with hydrogen peroxide or TNF-alpha is predominantly restricted to CBFNs, and that NF-kappaB activation appears to mostly affect p65 translocation to the nucleus, but not the p50 subunit. These results are consistent with NF-kappaB activation being a part of recovery processes after acute oxidative stress. Since p50 or p49 (also called p52) binding to promoter sites does not stimulate transcription - both p50 and p49 lack an activating domain - and p65 does contain an activating domain and thus can act as a transcription enhancer, differential translocation of different NF-kappaB dimers can act as repressors of constitutive activity or enhancers. These results are in agreement with the hypothesis that p50/p65 is the active trans-activating species of NF-kappaB, as compared to p50/p50 homodimers which bind to NF-kappaB binding sites but do not trans-activate promoters. Our results also suggest that selective activation of different NF-kappaB dimer species may have regulatory significance in neuronal responses to acute or chronic insults to CNS. Thus, increased p65 translocation could have enhancing effects while increased p50 translocation could have a repressor role. Manipulation of the types of NF-kappaB species being translocated could provide a basis for therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0736-5748(99)00087-8DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
basal forebrain
12
activation nf-kappab
12
nf-kappab
10
nf-kappab activation
8
p65 translocation
8
p50 p49
8
activating domain
8
activation
5
differential alterations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!