Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45.

J Bacteriol

Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, NL-9747 AG Groningen, The Netherlands.

Published: April 2000

The genes involved in isoprene (2-methyl-1,3-butadiene) utilization in Rhodococcus sp. strain AD45 were cloned and characterized. Sequence analysis of an 8.5-kb DNA fragment showed the presence of 10 genes of which 2 encoded enzymes which were previously found to be involved in isoprene degradation: a glutathione S-transferase with activity towards 1,2-epoxy-2-methyl-3-butene (isoI) and a 1-hydroxy-2-glutathionyl-2-methyl-3-butene dehydrogenase (isoH). Furthermore, a gene encoding a second glutathione S-transferase was identified (isoJ). The isoJ gene was overexpressed in Escherichia coli and was found to have activity with 1-chloro-2,4-dinitrobenzene and 3,4-dichloro-1-nitrobenzene but not with 1, 2-epoxy-2-methyl-3-butene. Downstream of isoJ, six genes (isoABCDEF) were found; these genes encoded a putative alkene monooxygenase that showed high similarity to components of the alkene monooxygenase from Xanthobacter sp. strain Py2 and other multicomponent monooxygenases. The deduced amino acid sequence encoded by an additional gene (isoG) showed significant similarity with that of alpha-methylacyl-coenzyme A racemase. The results are in agreement with a catabolic route for isoprene involving epoxidation by a monooxygenase, conjugation to glutathione, and oxidation of the hydroxyl group to a carboxylate. Metabolism may proceed by fatty acid oxidation after removal of glutathione by a still-unknown mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC101893PMC
http://dx.doi.org/10.1128/JB.182.7.1956-1963.2000DOI Listing

Publication Analysis

Top Keywords

involved isoprene
12
rhodococcus strain
8
strain ad45
8
genes encoded
8
glutathione s-transferase
8
alkene monooxygenase
8
characterization gene
4
gene cluster
4
cluster involved
4
isoprene
4

Similar Publications

Kamchatka (southeastern Siberia) ice core records of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls since 1690s: A signal for the tropospheric oxidizing capacity.

Sci Total Environ

December 2024

Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan; Chubu Institute for Advanced Studies, Chubu University, Kasugai, Japan. Electronic address:

There has been much interest about how to identify an ice core signal for oxidizing capacity of the troposphere. This study broadly explains the air-snow transfer/deposition process using ice core records of dicarboxylic (DCAs), ω-oxocarboxylic as well as pyruvic acids and α-dicarbonyls, which are potentially formed by atmospheric oxidation of aromatic hydrocarbons from the continent, incloud-oxidation of isoprene and unsaturated fatty acids from the western North Pacific. An ice core (~152 m long, 304 years) was collected at an ice cap on the Gorshkov crater at the summit of Ushkovsky (56° 04'N, 160° 28'E, altitude: 3903 m) in the Kamchatka Peninsula from southeastern Siberia.

View Article and Find Full Text PDF

New particle formation from isoprene under upper-tropospheric conditions.

Nature

December 2024

Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland.

Aircraft observations have revealed ubiquitous new particle formation in the tropical upper troposphere over the Amazon and the Atlantic and Pacific oceans. Although the vapours involved remain unknown, recent satellite observations have revealed surprisingly high night-time isoprene mixing ratios of up to 1 part per billion by volume (ppbv) in the tropical upper troposphere. Here, in experiments performed with the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we report new particle formation initiated by the reaction of hydroxyl radicals with isoprene at upper-tropospheric temperatures of -30 °C and -50 °C.

View Article and Find Full Text PDF

Secondary metabolites are bioactive compounds believed to contribute to the pharmacological properties of plants. MicroRNAs (miRNAs) are small non-coding RNA molecules involved in post-transcriptional regulation and are thought to play an important role in regulating secondary metabolism biosynthesis. Nevertheless, the extent of miRNA involvement in secondary metabolism remains minimal.

View Article and Find Full Text PDF

Stereoselective rhodium-catalyzed reaction of allenes with organoboronic reagents for diversified branched 1,3-alkadienes.

Nat Commun

September 2024

Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, P. R. China.

The terminal isoprene unit, as the simplest branched 1,3-diene unit, exists in a wide range of natural products and bioactive molecules. Herein, we report a stereoselective rhodium-catalyzed reaction of allenes with readily available methyl pinacol boronic ester, providing a straightforward approach to isoprene derivatives with a very high E-stereoselectivity. Its synthetic potential has been illustrated by a concise synthesis of natural product schinitrienin.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer poses a major global health challenge, with high mortality rates and complex treatment issues such as metastasis, recurrence, and chemoresistance, necessitating the search for new therapies.
  • Natural remedies, particularly terpenoids, have shown promise for their anticancer properties, highlighting their potential in developing effective cancer treatments.
  • This study focuses on the specific terpenoids’ structure-activity relationship to determine their efficacy against various cancers, including breast, colon, ovarian, and lung cancers, to enhance understanding of their anticancer mechanisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!