In order to gain a better understanding of the neuronal and local control of inner ear blood flow, the vascular innervation to the rat cochlea and vestibular system was examined. Specimens were removed in toto beginning at the basilar artery extending to the anterior inferior cerebellar artery, labyrinthine artery, common cochlear artery, modiolar artery and anterior vestibular artery. When possible the vessels were dissected in continuity through the cribrose area. The vestibular endorgans were also removed. Specimens were examined using immunohistochemical techniques for the presence of vasoactive intestinal peptide, neuronal nitric oxide synthase, neuropeptide-Y, substance P and calcitonin gene related peptide. Results show that the vasculature to the cochlea and vestibular portion of the inner ear receive similar types of nonadrenergic innervation, that within the vestibular endorgans, only CGRP and SP were found in the neuroepithelium or in association with vessels, and that within the vestibular system, the majority of the vascular innervation appears to stop at or near the cribrose area. In the cochlea however, it extends to include the radiating arterioles. These findings suggest that cochlear blood flow is under finer control and that neuronally induced changes in blood flow may have a more global effect in the vestibular periphery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-5955(00)00004-6 | DOI Listing |
J Transl Med
January 2025
Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands.
Background: Prenatal development of autonomic innervation of sinus venosus-related structures might be related to atrial arrhythmias later in life. Most of the pioneering studies providing embryological background are conducted in animal models. To date, a detailed comparison with the human cardiac autonomic nervous system (cANS) is lacking.
View Article and Find Full Text PDFNeurology
February 2025
From the Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.
Background And Objectives: Lewy body diseases (LBDs) such as Parkinson disease (PD) feature increased deposition of α-synuclein (α-syn) in cutaneous sympathetic noradrenergic nerves. The pathophysiologic significance of sympathetic intraneuronal α-syn is unclear. We reviewed data about immunoreactive α-syn, tyrosine hydroxylase (TH, a marker of catecholaminergic fibers), and the sympathetic neurotransmitter norepinephrine (NE) in skin biopsies from control participants and patients with PD, the related LBD pure autonomic failure (PAF), the non-LBD synucleinopathy multiple system atrophy (MSA), or neurologic postacute sequelae of severe acute respiratory syndrome coronavirus 2 (neuro-PASC).
View Article and Find Full Text PDFCancer Discov
January 2025
Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
The exponential growth of the cancer neuroscience field has shown that the host's immune, vascular, and nervous systems communicate with and influence each other in the tumor microenvironment, dictating the cancer malignant phenotype. Unraveling the nervous system's contributions toward this phenotype brings us closer to cancer cures. In this review, we summarize the peripheral nervous system's contributions to cancer.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea.
Purpose: To investigate the therapeutic potential of eliminating insulin-like growth factor-binding protein 5 (IGFBP5) expression in improving erectile function in mice with cavernous nerve injury (CNI)-induced erectile dysfunction (ED).
Materials And Methods: Eight-week-old male C57BL/6 mice were divided into four groups: a sham-operated group and three CNI-induced ED groups. The CNI-induced ED groups were treated with intracavernous injections 3 days before the CNI procedure.
Oper Neurosurg (Hagerstown)
January 2025
Department of Neurological Surgery, The Ohio State University, Columbus, Ohio, USA.
Background And Importance: Superior oblique myokymia (SOM) is a rare, acquired aberration of the innervation of the superior oblique, resulting in episodic monocular contraction of the superior oblique muscle characterized by intermittent rotatory eye movement causing diplopia and oscillopsia. Several treatment modalities have been described to treat SOM, including medication and surgical interventions. There is a paucity of reports describing microvascular decompression (MVD) of the trochlear nerve near the root entry zone for the treatment of a neurovascular conflict.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!