Interactions among components of the Salmonella flagellar export apparatus and its substrates.

Mol Microbiol

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.

Published: March 2000

We have examined the cytoplasmic components (FliH, FliI and FliJ) of the type III flagellar protein export apparatus, plus the cytoplasmic domains (FlhAC and FlhBC) of two of its six membrane components. FliH, FlhAC and FliJ, when overproduced, caused inhibition of motility of wild-type cells and inhibition of the export of substrates such as the hook protein FlgE. Co-overproduction of FliH and FliI substantially relieved the inhibition caused by FliH, suggesting that it is excess free FliH that is inhibitory and that FliH and FliI form a complex. We purified His-FLAG-tagged versions of: (i) export components FliH, FliI, FliJ, FlhAC and FlhBC; (ii) rod/hook-type export substrates FlgB (rod protein), FlgE (hook protein), FlgD (hook capping protein) and FliE (basal body protein); and (iii) filament-type export substrates FlgK and FlgL (hook-filament junction proteins) and FliC (flagellin). We tested for protein-protein interactions by affinity blotting. In many cases, a given protein interacted with more than one other component, indicating that there are likely to be multiple dynamic interactions or interactions that involve more than two components. Interactions of FlhBC with rod/hook-type substrates were strong, whereas those with filament-type substrates were very weak; this may reflect the role of FlhB in substrate specificity switching. We propose a model for the flagellar export apparatus in which FlhA and FlhB and the other four integral membrane proteins of the apparatus form a complex at the base of the flagellar motor. A soluble complex of at least three proteins (FliH, FliI and FliJ) bind the protein to be exported and then interact with the complex at the motor to deliver the protein, which is then exported in an ATP-dependent process mediated by FliI.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.2000.01771.xDOI Listing

Publication Analysis

Top Keywords

flih flii
20
export apparatus
12
components flih
12
flii flij
12
export substrates
12
protein
9
flagellar export
8
flih
8
flhac flhbc
8
hook protein
8

Similar Publications

Druggability Analysis of Protein Targets for Drug Discovery to Combat .

Microorganisms

May 2024

Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA.

Extensive research has been conducted to identify key proteins governing stress responses, virulence, and antimicrobial resistance, as well as to elucidate their interactions within . While these proteins hold promise as potential targets for novel strategies to control , given their critical roles in regulating the pathogen's metabolism, additional analysis is needed to further assess their druggability-the chance of being effectively bound by small-molecule inhibitors. In this work, 535 binding pockets of 46 protein targets for known drugs (mainly antimicrobials) were first analyzed to extract 13 structural features (e.

View Article and Find Full Text PDF

FliH and FliI help FlhA bring strict order to flagellar protein export in Salmonella.

Commun Biol

March 2024

Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.

The flagellar type III secretion system (fT3SS) switches substrate specificity from rod-hook-type to filament-type upon hook completion, terminating hook assembly and initiating filament assembly. The C-terminal cytoplasmic domain of FlhA (FlhA) forms a homo-nonameric ring and is directly involved in substrate recognition, allowing the fT3SS to coordinate flagellar protein export with assembly. The highly conserved GYXLI motif (residues 368-372) of FlhA induces dynamic domain motions of FlhA required for efficient and robust flagellar protein export by the fT3SS, but it remains unknown whether this motif is also important for ordered protein export by the fT3SS.

View Article and Find Full Text PDF

Most motile bacteria utilize the flagellar type III secretion system (fT3SS) to construct the flagellum, which is a supramolecular motility machine consisting of basal body rings and an axial structure. Each axial protein is translocated via the fT3SS across the cytoplasmic membrane, diffuses down the central channel of the growing flagellar structure and assembles at the distal end. The fT3SS consists of a transmembrane export complex and a cytoplasmic ATPase ring complex with a stoichiometry of 12 FliH, 6 FliI and 1 FliJ.

View Article and Find Full Text PDF

Aims: Vibrio parahaemolyticus is one of the most frequently occurred pathogens in mariculture. This study aimed to explore the mechanism of the impact of Ulva fasciata on the motility and biofilm formation of V. parahaemolyticus.

View Article and Find Full Text PDF

The proton motive force (PMF) consists of the electric potential difference (Δψ), which is measured as membrane voltage, and the proton concentration difference (ΔpH) across the cytoplasmic membrane. The flagellar protein export machinery is composed of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase ring complex consisting of FliH, FliI, and FliJ. ATP hydrolysis by the FliI ATPase activates the export gate complex to become an active protein transporter utilizing Δψ to drive proton-coupled protein export.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!