High-conductance Ca(2+)-activated K(+) (K(Ca)) channels were studied in mouse skeletal muscle fibers using the patch-clamp technique. In inside-out patches, application of negative pressure to the patch induced a dose-dependent and reversible activation of K(Ca) channels. Stretch-induced increase in channel activity was found to be of the same magnitude in the presence and in the absence of Ca(2+) in the pipette. The dose-response relationships between K(Ca) channel activity and intracellular Ca(2+) and between K(Ca) channel activity and membrane potential revealed that voltage and Ca(2+) sensitivity were not altered by membrane stretch. In cell-attached patches, in the presence of high external Ca(2+) concentration, stretch-induced activation was also observed. We conclude that membrane stretch is a potential mode of regulation of skeletal muscle K(Ca) channel activity and could be involved in the regulation of muscle excitability during contraction-relaxation cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.2000.278.3.C473 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!