Background: Ceramic hydroxyapatite implants have been used in dentistry for their unique compatibility with alveolar bone. Recently it was reported that bisphosphonates may be beneficial in preventing alveolar bone destruction associated with natural and experimental periodontal disease. Furthermore, bisphosphonate does prevent resorption of alveolar bone following mucoperiosteal flap surgery. We undertook a preliminary study evaluating the effects of highly bisphosphonate-complexed hydroxyapatite implants on osteoconduction and repair in rat tibiae.

Methods: Porous hydroxyapatite implants were pre-incubated in 10(-2)M bisphosphonate solutions at pH 3.49 and pH 7.32. The implants had a diameter of 2.1 mm and a height of 2 mm and adsorbed 115 microg bisphosphonate in vitro. Bisphosphonate/hydroxyapatite implants and plain hydroxyapatite implants were inserted in opposite tibial metaphyses of 35 rats. The measurement errors for the mineral density (MD) of the implants and the proximal trabecular mineral bone density (TD) were estimated by peripheral computed tomography and the bone mineral density (BMD) measurement error by dual x-ray absorptiometry.

Results: The measurement errors for the MD of the implants and the TD by peripheral computed tomography were 0.81% and 1.96%, respectively ex vivo. The BMD measurement error estimated by dual x-ray absorptiometry was 0.51% ex vivo. TD and BMD for bisphosphonate/hydroxyapatite implants were insignificantly higher compared to plain hydroxyapatite implants. Bisphosphonate/hydroxyapatite pre-incubated at pH 7.32 were found to be nondegradable implants, while bisphosphonate/hydroxyapatite (pH 3.49) implants were slowly degradable and lost a significant 5% of their density. Histologically, all bisphosphonate/hydroxyapatite implants appeared to be fully integrated and effective as bone replacement material in rat tibial bone. They exhibited vascularization and osteoconduction of tibial bone growth along and inside their porous structure.

Conclusions: Our study suggests that normal osteoconduction and repair occurred in and around the highly bisphosphonate-complexed hydroxyapatite implants in rat tibiae.

Download full-text PDF

Source
http://dx.doi.org/10.1902/jop.2000.71.2.272DOI Listing

Publication Analysis

Top Keywords

hydroxyapatite implants
28
implants
15
osteoconduction repair
12
highly bisphosphonate-complexed
12
bisphosphonate-complexed hydroxyapatite
12
alveolar bone
12
bisphosphonate/hydroxyapatite implants
12
normal osteoconduction
8
implants rat
8
rat tibiae
8

Similar Publications

The existing demand for the development of innovative multimodal imaging nanomaterial probes for biomedical applications stems from their unique combination of dual response modalities, , photoluminescence (PL) and magnetic resonance imaging (MRI). In this study, for the first time, neodymium (Nd) and dysprosium (Dy) rare earth (RE) metal ions were co-doped into a hydroxyapatite (HAp) crystal lattice using a simple microwave-assisted synthesis technique to incorporate the essential properties of both the lanthanides in HAp. Theoretical as well as experimental studies were performed on novel Nd:Dy:HAp nanoparticles (NPs) to understand their photoluminescence and magnetic behaviour.

View Article and Find Full Text PDF

Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions.

View Article and Find Full Text PDF

Nuclear morphology, which modulates chromatin architecture, plays a critical role in regulating gene expression and cell functions. While most research has focused on the direct effects of nuclear morphology on cell fate, its impact on the cell secretome and surrounding cells remains largely unexplored, yet is especially crucial for cell-based therapies. In this study, we fabricated implants with a micropillar topography using methacrylated poly(octamethylene citrate)/hydroxyapatite (mPOC/HA) composites to investigate how micropillar-induced nuclear deformation influences cell paracrine signaling for osteogenesis and cranial bone regeneration.

View Article and Find Full Text PDF

Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.

View Article and Find Full Text PDF

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!