Pulmonary surfactant (PS) reduces inflammation in the lung by poorly understood mechanisms. We have observed that surfactant-associated proteins (SAP) insert monovalent cation channels in artificial membranes. Neutrophils are primary mediators of acute pulmonary inflammation, and their functions are activated by increases in cytosolic ionized calcium concentration ([Ca2+]) and by changes in membrane potential. We hypothesize that PS inserts SAP-dependent cation channels in neutrophils, causing membrane depolarization, altered [Ca2+] response, and depressed activation. Human neutrophils were isolated, exposed to PS+SAP (1% Survanta), PS-SAP (1% Exosurf), or buffer, and washed before activating with selected stimulants. PS+SAP reduced phorbol ester- and formyl peptide-stimulated adherence and aggregation by 38% (p < 0.05) and 54% (p < 0.02), respectively. PS+SAP also inhibited the formyl peptide-induced [Ca2+] response of neutrophils (p < 0.01), but only in the presence of external Ca2+. Further characterization of this inhibition demonstrated that PS+SAP blocked formyl peptide-induced influx of both Ca2+ and Mn2+, and that this inhibition was present during activation by other neutrophil stimulants (IL-8, immune complexes). Prior depolarization of neutrophils with gramicidin-D similarly inhibited the [Ca2+] response of neutrophils to formyl peptide, and analysis of neutrophil membrane potential by 3,3'-dipentyloxaearbocyanine iodide (diOC5(3)) fluorescence revealed that PS+SAP induced rapid neutrophil depolarization. In contrast, PS-SAP exhibited little effect on neutrophil function, [Ca2+], or membrane potential. We conclude that PS+SAP decreases neutrophil adherence and aggregation responses, blocks Ca2+ influx after physiologic stimulation, and decreases membrane potential. We speculate that these effects are caused by membrane depolarization via SAP-dependent cation channel insertion, and that all of these effects contribute to the antiinflammatory properties of PS+SAP.

Download full-text PDF

Source
http://dx.doi.org/10.1203/00006450-200003000-00020DOI Listing

Publication Analysis

Top Keywords

membrane potential
16
response neutrophils
12
membrane depolarization
12
[ca2+] response
12
physiologic stimulation
8
cation channels
8
sap-dependent cation
8
adherence aggregation
8
formyl peptide-induced
8
neutrophils
7

Similar Publications

Progressive Approaches in Oncological Diagnosis and Surveillance: Real-Time Impedance-Based Techniques and Advanced Algorithms.

Bioelectromagnetics

January 2025

Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA.

Cancer remains a formidable global health challenge, necessitating the development of innovative diagnostic techniques capable of early detection and differentiation of tumor/cancerous cells from their healthy counterparts. This review focuses on the confluence of advanced computational algorithms with noninvasive, label-free impedance-based biophysical methodologies-techniques that assess biological processes directly without the need for external markers or dyes. This review elucidates a diverse array of state-of-the-art impedance-based technologies, illuminating distinct electrical signatures inherent to cancer vs healthy tissues.

View Article and Find Full Text PDF

Modeling the response to interleukin-21 to inform natural killer cell immunotherapy.

Immunol Cell Biol

January 2025

Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.

Natural killer (NK) cells are emerging agents for cancer therapy. Several different cytokines are used to generate NK cells for adoptive immunotherapy including interleukin (IL)-2, IL-12, IL-15 and IL-18 in solution, and membrane-bound IL-21. These cytokines drive NK cell activation through the integration of signal transducers and activators of transcription (STAT) and nuclear factor-kappa B (NF-κB) pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations for both proliferation and cytotoxicity.

View Article and Find Full Text PDF

Vacuolization of hematopoietic precursors cells is a common future of several otherwise non-related clinical settings such as VEXAS, Chediak-Higashi syndrome and Danon disease. Although these disorders have a priori nothing to do with one other from a clinical point of view, all share abnormal vacuolization in different cell types including cells of the erythroid/myeloid lineage that is likely the consequence of moderate to drastic dysfunctions in the ubiquitin proteasome system and/or the endo-lysosomal pathway. Indeed, the genes affected in these three diseases UBA1, LYST or LAMP2 are known to be direct or indirect regulators of lysosome trafficking and function and/or of different modes of autophagy.

View Article and Find Full Text PDF

Purpose: To develop and validate a prostate-specific membrane antigen (PSMA) PET/CT based multimodal deep learning model for predicting pathological lymph node invasion (LNI) in prostate cancer (PCa) patients identified as candidates for extended pelvic lymph node dissection (ePLND) by preoperative nomograms.

Methods: [Ga]Ga-PSMA-617 PET/CT scan of 116 eligible PCa patients (82 in the training cohort and 34 in the test cohort) who underwent radical prostatectomy with ePLND were analyzed in our study. The Med3D deep learning network was utilized to extract discriminative features from the entire prostate volume of interest on the PET/CT images.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!