The present study sought to investigate the contributions of the dorsal prelimbic/anterior cingulate and ventral prelimbic/infralimbic cortices to the reverse microdialysis of amphetamine (1, 10, 100, 500, and 1000 microM) on dialysate acetylcholine, choline, norepinephrine, and serotonin levels. The results demonstrate that basal levels of acetylcholine, choline, and serotonin were homogeneous within subregions of the medial prefrontal cortex. In contrast, dialysate norepinephrine levels were significantly higher in the anterior cingulate cortex compared with the infralimbic cortex. Reverse microdialysis of amphetamine in both subareas of the medial prefrontal cortex produced a dose-dependent increase in norepinephrine and serotonin levels; the magnitude of this effect was similar in both subterritories of the medial prefrontal cortex. Microinfusion of amphetamine increased dialysate acetylcholine levels in a dose-dependent manner only in the infralimbic cortex. Finally, amphetamine decreased choline levels in both subregions of the medial prefrontal cortex. The magnitude of this effect was larger in the anterior cingulate cortex compared with its infralimbic counterpart. Since depletions of frontal cortical acetylcholine result in severe cognitive deficits, the present data raise the possibility that the type of neural integrative processes that acetylcholine mediates depends, at least in part, on the subterritories that characterize the medial prefrontal cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-2999(00)00038-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!