The lactococcal abortive infection mechanism AbiK was previously shown to be highly effective against the small isometric-headed bacteriophage ul36 of the P335 species, as evidenced by an efficiency of plaquing (e.o.p.) of 10(-6), a 14-fold reduction in the burst size and an efficiency at which centres of infection form (e.c.o.i.) of 0.5%. No phage DNA was detected in the infected AbiK+ cells [Emond, E., Holler, B. J., Boucher, I., Vandenbergh, P. A., Vedamuthu, E. R., Kondo, J. K. & Moineau, S. (1997). Appl Environ Microbiol 63, 1274-1283]. Here, the effects of AbiK are compared on the small isometric-headed phages p2 and P008 (936 species) and on the phage P335 (P335 species). The microbiological impacts of AbiK on p2 were relatively similar to those reported for ul36, with an e.o.p. of 10(6), an 11-fold reduction in the burst size and an e.c.o.i. of 5%. Contrary to phage ul36, replication of phage p2 DNA was observed in the AbiK+ cells. Only immature forms (concatemeric and circular DNA) of phage p2 DNA were found, indicating that the presence of AbiK prevented phage DNA maturation. These distinct molecular consequences of AbiK were also observed for phages P335 and P008, two phages that propagate on the same host. To the knowledge of the authors, this is the first time that different phage responses towards an Abi system have been reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00221287-146-2-445 | DOI Listing |
Arch Microbiol
January 2025
Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1).
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a severe threat for human health and urgently needs new therapeutic approaches. Lytic bacteriophages (phages) are promising clinically viable therapeutic options against CRKP. We attempted to isolate lytic phages against CRKP of sequence type 11 and capsular type 64 (ST11-KL64), the predominant type in China.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
Microrheology has become an indispensable tool for measuring the dynamics of macromolecular systems. Yet, its ability to characterize polymer dynamics across spatiotemporal scales, which vary among polymers and concentration regimes, is limited by the selection of probe morphologies and sizes. Here, we introduce semiflexible M13 phage as a powerful microrheological probe able to circumvent these constraints to robustly capture the dynamics of polymeric solutions across decades of concentrations, sizes, and ionic conditions.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
Enterococcus species, natural inhabitants of the human gut, have become major causes of life-threatening bloodstream infections (BSIs) and the third most frequent cause of hospital-acquired bacteremia. The rise of high-level gentamicin resistance (HLGR) in enterococcal isolates complicates treatment and revives bacteriophage therapy. This study isolated and identified forty E.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!