Isolation and characterisation of sialidase from a strain of Streptococcus oralis.

J Med Microbiol

Joint Microbiology Research Unit, GKT Dental Institute, London SE5 9RW.

Published: March 2000

Streptococcus oralis, the most virulent of the viridans streptococci, produces a sialidase and this exo-glycosidase has been implicated in the disease process of a number of pathogens. The sialidase of S. oralis strain AR3 was purified in order to understand the characteristics of this putative virulence determinant. The enzyme isolated as a high mol. wt aggregate (c. 325 kDa) was purified 4520-fold from late exponential phase cultures by a combination of ultrafiltration, ammonium sulphate precipitation, ion-exchange and gel filtration chromatography. The sialidase component had a mol.wt of 144 kDa as determined by SDS-PAGE analysis. The purified sialidase released N-acetylneuraminic acid from a range of sialoglycoconjugates including human alpha1-acid glycoprotein, bovine submaxillary mucin, colominic acid and sialyl-alpha2,3- and sialyl-alpha2,6-lactose. Also, N-glycolylneuraminic acid was cleaved from bovine submaxillary mucin. The sialidase had a Km of 11.8 microM for alpha1-acid glycoprotein, was active over a broad pH range with a pH optimum of 6.0 and cleaved alpha2,3-, alpha2,6- and alpha2-8-sialyl glycosidic linkages with a marked preference for alpha2,3-linkages. The enzyme was competitively inhibited by the sialic acid derivative, 2,3-dehydro-N-acetylneuraminic acid, with a K(IC) of 1.2 microM. The characteristics of the purified sialidase would support a nutritional role for this enzyme that may be significant in the proliferation of this organism in the oral cavity and at extra-oral sites in association with life-threatening infections.

Download full-text PDF

Source
http://dx.doi.org/10.1099/0022-1317-49-3-235DOI Listing

Publication Analysis

Top Keywords

streptococcus oralis
8
purified sialidase
8
alpha1-acid glycoprotein
8
bovine submaxillary
8
submaxillary mucin
8
sialidase
7
acid
5
isolation characterisation
4
characterisation sialidase
4
sialidase strain
4

Similar Publications

Biosynthesis and Characterization of Silver Nanoparticles and Simvastatin Association in Titanium Biofilms.

Pharmaceuticals (Basel)

November 2024

Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil.

Introduction: Simvastatin is an antilipidemic drug that has already demonstrated antibacterial activities on oral and non-oral microorganisms. Silver nanoparticles also exhibit antimicrobial properties, particularly for coating implant surfaces. In this study, we evaluated the effects of combining simvastatin with silver nanoparticles on the formation and viability of biofilms consolidated on titanium discs.

View Article and Find Full Text PDF

Our aim was to investigate risk factors, clinical characteristics, and antibiotic susceptibility patterns of cornea-isolated species collected at a tertiary hospital in China over 18 years. This retrospective study reviewed data from 350 patients diagnosed with keratitis at Beijing Tongren Hospital between January 2006 and December 2023, including demographics, risk factors, clinical signs, in vivo confocal microscopy (IVCM) imaging, and antibiotic susceptibility testing. The predominant type was (n = 108, 29.

View Article and Find Full Text PDF

Dental implant coronal surfaces designed with the primary goal of maintaining crestal bone levels may also promote bacterial adhesion, leading to soft tissue inflammation and peri-implant bone loss. Achieving an optimal surface roughness that minimizes bacterial adhesion while preserving crestal bone is crucial. It is hypothesized that a specific threshold surface roughness value may exist below which, and above which, initial bacterial adhesion does not statistically change.

View Article and Find Full Text PDF

Human dental caries is an intractable biofilm-associated disease caused by the symbiotic cariogenic bacteria, but how to target effectively eliminate cariogenic bacterial and their biofilms without affecting normal bacteria still remains great challenges. To address this issue, we reported Cu,Fe-doped chitosan-based nanozyme (i.e.

View Article and Find Full Text PDF

Inflammasome regulation by the cell surface ecto-5'-nucleotidase of the oral commensal, Streptococcus oralis.

Biochem Biophys Res Commun

January 2025

Department of Oral Microbiology and Immunology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan. Electronic address:

Streptococcus oralis is a commensal oral bacterium that acts as an opportunistic pathogen, causing systemic diseases, such as infective endocarditis and aspiration pneumonia. However, the specific molecular mechanisms underlying its transition from commensal to pathogenic state remain unclear. In this study, to further elucidate the mechanisms underlying virulence expression, we identified and characterized the cell surface-associated ecto-5'-nucleotidase (Nt5e) in S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!