The aim of this study was to investigate, if transient spinal ischemia and a period of 4-day reperfusion will change the distribution pattern of substance P in the spinal cord of rabbits. Strongly enhanced staining of substance P positive nerve structures appeared in the superficial dorsal horn (laminae I, II), the Lissauer's tract, the pericentral region (lamina X), and in the areas of autonomic nuclei (sympathetic-intermediolateral--IML nucleus and parasympathetic-sacral parasympathetic nucleus--SPN) in the control group. Transient spinal ischemia was produced by occlusion of the abdominal aorta just below the left renal artery. Neuropathology of the lesion 4 days after transient ischemia was characterized by selective necrosis of gray matter in the central part of dorsal horn and medial portions of anterior gray matter. Areas with the most dense accumulation of substance P positive structures stayed almost intact. Therefore, no significant change in the distribution pattern of substance P was found in the spinal cord of animals with ischemia-reperfusion-induced injury.
Download full-text PDF |
Source |
---|
Ann Vasc Surg
January 2025
Division of Vascular Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA.
Objectives: The population in the U.S., and across the world is aging rapidly which warrants an assessment of the safety of surgical approaches in elderly individuals to better risk stratify and inform surgeons' decision making for optimal patient care.
View Article and Find Full Text PDFBrain Sci
January 2025
Center for Experimental Biology, Laboratory of Neuroimmunobiology of Pain, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil.
Background: Chronic postoperative pain (CPOP) is among the main consequences of surgical procedures, directly affecting the quality of life. Although many strategies have been used to treat this symptom, they are often ineffective. Thus, studies investigating CPOP-associated mechanisms may help to develop more effective treatment strategies.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain.
Spinal cord injury (SCI) causes abnormal liver function, the development of metabolic dysfunction-associated steatotic liver disease features and metabolic impairment in patients. Experimental models also demonstrate acute and chronic changes in the liver that may, in turn, affect SCI recovery. These changes have collectively been proposed to contribute to the development of a SCI-induced metabolic dysfunction-associated steatohepatitis (MASH).
View Article and Find Full Text PDFOrthop Surg
January 2025
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Iatrogenic cervical kyphosis (ICK) often requires complex anterior and posterior correction, which is associated with multiple complications. Consequently, there is a need to investigate alternative treatment approaches that streamline the operative process and markedly diminish postoperative complications. This study, therefore, aimed to evaluate the feasibility and efficacy of a single-stage anterior controllable antedisplacement fusion (ACAF) in revision surgeries for ICK.
View Article and Find Full Text PDFDorsal-ventral patterning of neural progenitors in the posterior neural tube, which gives rise to the spinal cord, has served as a model system to understand how extracellular signals organize developing tissues. While previous work has shown that signaling gradients diversify progenitor fates at the dorsal and ventral ends of the tissue, the basis of fate specification in intermediate regions has remained unclear. Here we use zebrafish to investigate the neural plate, which precedes neural tube formation, and show that its pre-patterning by a distinct signaling environment enables intermediate fate specification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!