Despite being a well-characterized neurotrophic factor, nerve growth factor (NGF) influences survival, differentiation, and functions of mast cells. We investigated whether NGF was able to induce directional migration of rat peritoneal mast cells (PMCs). NGF clearly induced chemotactic movement of PMCs in a dose-dependent manner with the drastic morphological change and distribution of F-actin, which was completely blocked by pretreatment with Clostridium botulinum C(2) toxin, an actin-polymerization inhibitor. Because PMCs constitutively express the NGF high-affinity receptor (TrkA) with a tyrosine kinase domain, we focused on downstream effectors in signaling cascades following the TrkA. NGF rapidly activated both mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K), and the addition of inhibitors specific for MAPK kinase and PI3K suppressed cell migration and these signals. In the coculture system with PMCs and fibroblasts, which produce biologically active NGF, directional migration of PMCs to fibroblasts was observed, and the addition of anti-NGF polyclonal antibodies significantly suppressed the migration of PMCs. These findings suggested that NGF initiated chemotactic movement of PMCs through both MAPK and PI3K signaling pathways following TrkA activation. Thus, locally produced NGF may play an important role in mast cell accumulation in allergic and nonallergic inflammatory conditions. (Blood. 2000;95:2052-2058)
Download full-text PDF |
Source |
---|
Orthop Surg
January 2025
Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.
Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.
View Article and Find Full Text PDFBiomater Res
January 2025
Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
As a complex and dynamically regulated process, wound healing is collaboratively carried out by multiple types of cells. However, the precise mechanisms by which these cells contribute to immune regulation are not yet fully understood. Although research on bone regeneration has been quite extensive, the application of bioactive glass (BG) in skin tissue repair remains still relatively underexplored.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
January 2025
Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
Objectives: Chitosan is widely used in medicine to regulate immune responses in T cells and dendritic cells. However, research on the regulation of mast cells (MCs) is scarce. Mas-related G-protein-coupled receptor X2 (MRGPRX2) is a key receptor that mediates MC activation.
View Article and Find Full Text PDFActa Cir Bras
January 2025
Universidade Federal de São João del-Rei - Laboratory of Experimental Pathology - São João del-Rei (MG) - Brazil.
Purpose: To evaluate the effect of the topical application of the ethanol extract (EESL) and the hydroethanolic fraction (HFSL) of ripe Solanum lycocarpum fruit on the healing of experimentally-induced wounds in mice.
Methods: The EESL and HFSL obtained from ripe fruit of the species S. lycocarpum were obtained by percolation with ethanol.
Front Allergy
January 2025
Research Institute of Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico.
Allergies are closely associated with sex-related hormonal variations that influence immune function, leading to distinct symptom profiles. Similar sex-based differences are observed in other immune disorders, such as autoimmune diseases. In allergies, women exhibit a higher prevalence of atopic conditions, such as allergic asthma and eczema, in comparison to men.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!