Bone morphogenetic protein-4 (BMP4), a member of the transforming growth factor-beta (TGF-beta) family, regulates several developmental processes during animal development. We have now studied the effects of BMP-4 in the metanephric kidney differentiation by using organ culture technique. Human recombinant BMP-4 diminishes the number of ureteric branches and changes the branching pattern. Our data suggest that BMP-4 affects the ureteric branching indirectly via interfering with the differentiation of the nephrogenic mesenchyme. The clear positional preference of the defects to posterior mesenchyme might reflect an early anterior-posterior patterning of the metanephric mesenchyme. The smooth muscle alpha-actin expressing cell population around the ureteric stalk, highly expressing Bmp-4 mRNA, is also expanded in kidneys treated with BMP-4. Thus, BMP-4 may be a physiological regulator of the development of the periureteric smooth muscle layer and ureteric elongation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1097-0177(200002)217:2<146::AID-DVDY2>3.0.CO;2-IDOI Listing

Publication Analysis

Top Keywords

metanephric mesenchyme
8
early anterior-posterior
8
smooth muscle
8
bmp-4
7
bmp-4 differentiation
4
differentiation metanephric
4
mesenchyme
4
mesenchyme reveals
4
reveals early
4
anterior-posterior axis
4

Similar Publications

Growth arrest specific 1 (GAS1) is a key regulator of mammalian embryogenesis, best known for its role in hedgehog (HH) signaling, but with additional described roles in the FGF, RET, and NOTCH pathways. Previous work indicated a later role for GAS1 in kidney development through FGF pathway modulation. Here, we demonstrate that GAS1 is essential for both mesonephrogenesis and metanephrogenesis - most notably, Gas1 deletion in mice results in renal agenesis in a genetic background-dependent fashion.

View Article and Find Full Text PDF

Renin is crucial for blood pressure regulation and electrolyte balance, and its expressing cells arise from Forkhead box D1-positive (Foxd1) stromal progenitors. However, factors guiding these progenitors toward renin-secreting cell fate remain unclear. Tcf21, a basic helix-loop-helix (bHLH) transcription factor, is essential in kidney development.

View Article and Find Full Text PDF

Our study examines the immunoexpression patterns of Megalin, Cubilin, Caveolin-1, Gipc1 and Dab2IP in the embryonic development (E) and postnatal (P) mouse kidney, with a focus on differentiating patterns between wild-type (wt) and , () mice. Immunofluorescence revealed raised immunoexpression of receptors Megalin and Cubilin at the ampulla/collecting ducts and convoluted tubules across all developmental stages, with the most prominent immunoexpression observed in the convoluted tubules and the parietal epithelium of the Bowman's capsule. Quantitative analysis showed a higher percentage of Megalin and Cubilin in wt compared to mice at E13.

View Article and Find Full Text PDF

Unlabelled: Renin is crucial for blood pressure regulation and electrolyte balance, and its expressing cells arise from Foxd1+ stromal progenitors. However, factors guiding these progenitors toward renin-secreting cell fate remain unclear. Tcf21, a basic helix-loop-helix (bHLH) transcription factor, is essential in kidney development.

View Article and Find Full Text PDF

Engineering physiological environments to advance kidney organoid models from human pluripotent stem cells.

Curr Opin Cell Biol

February 2024

Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. Electronic address:

Article Synopsis
  • During kidney development in embryos, the ureteric bud and metanephric mesenchyme interact to promote kidney formation through gene regulation and signaling pathways.
  • Researchers are now able to create kidney organoids from human pluripotent stem cells, using bioengineering techniques to create controlled environments for their growth.
  • Recent advancements, including combining these organoids with organ-on-chip technology, aim to improve models for drug development and understanding kidney diseases, potentially leading to new therapeutic options.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!