Solution conformations of short-chain phosphatidylcholine. Substrates of the phosphatidylcholine-preferring PLC of Bacillus cereus.

Biochim Biophys Acta

Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.

Published: March 2000

The phosphatidylcholine (PC)-preferring phospholipase C (PLC) from Bacillus cereus (PLC(Bc)) hydrolyzes various 1,2-diacyl derivatives of PC at different rates. Substrates with side chains having eight or more carbons are present in micellular form in aqueous media and are processed most rapidly. The catalytic efficiency (k(cat)/K(m)) for the hydrolyses of short-chain PCs at concentrations below their respective critical micelle concentrations also decreases as the side chains become shorter, and this loss of efficiency owes its origin to increases in K(m). In order to ascertain whether the observed increases in K(m) might arise from conformational changes in the glycerol backbone, nuclear magnetic resonance (NMR) experiments were performed in D(2)O to determine the (3)J(HH) and (3)J(CH) coupling constants along the glycerol subunit of 1, 2-dipropanoyl-sn-glycero-3-phosphocholine (K(m)=61 mM), 1, 2-dibutanoyl-sn-glycero-3-phosphocholine (K(m)=21.2 mM) and 1, 2-dihexanoyl-sn-glycero-3-phosphocholine (K(m)=2.4 mM). Using these coupling constants, the fractional populations for each rotamer about the backbone of each of substrate were calculated. Two rotamers, which were approximately equally populated, about the sn-1-sn-2 bond of each substrate were significantly preferred, and in these conformers, the oxygens on the sn-1 and sn-2 carbons of the backbone were synclinal to optimize intramolecular hydrophobic interactions between the acyl side chains. There was greater flexibility about the sn-2-sn-3 bond, and each of the three possible staggered conformations was significantly populated, although there was a slight preference for the rotamer in which the oxygen bearing the phosphate head group was synclinal to the oxygen at the sn-2 carbon and to the sn-1 carbon; in this orientation, the head group is folded back relative to the side chains. These studies demonstrate that there is no significant change in the conformation about the glycerol backbone as a function of side chain length in short-chain phospholipids. Thus, prior organization of the substrate seems an unlikely determinant of the catalytic efficiency of PLC(Bc), and other factors such as hydrophobic interactions or differential solvation/desolvation effects associated with the complexation of the substrate with PLC(Bc) may be involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0005-2736(99)00252-7DOI Listing

Publication Analysis

Top Keywords

side chains
16
plc bacillus
8
bacillus cereus
8
catalytic efficiency
8
glycerol backbone
8
coupling constants
8
hydrophobic interactions
8
head group
8
side
5
solution conformations
4

Similar Publications

In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend.

View Article and Find Full Text PDF

Anion exchange membranes (AEMs) as a kind of important functional material are widely used in fuel cells. However, synthetic AEMs generally suffer from low conductivity, poor alkaline stability, and poor dimensional stability. Constructing efficient ion transport channels is widely regarded as one of the most effective strategies for developing AEMs with high conductivity and low swelling ratio.

View Article and Find Full Text PDF

Facile Synthesis of Thermoresponsive Alternating Copolymers with Tunable Phase-Transition Temperatures.

Polymers (Basel)

December 2024

Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.

A series of novel amphiphilic alternating CPEG copolymers were synthesized through an amine-epoxy click reaction comprising aliphatic amine and polyethylene glycol diglycidyl ether (PEGDE). These polymers were characterized in detail via nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) to confirm the successful synthesis. Due to their amphiphilic structure, these polymers display thermoresponsiveness, with tunable cloud points (Tcps) that are adjustable from 20.

View Article and Find Full Text PDF

In order to investigate the mechanism of mechanical performance enhancement and the curing mechanisms of acrylate emulsion (AE) in cement and magnesium slag (MS) composite-stabilized soil (AE-C-M), this study has conducted a comprehensive analysis of the compressive strength and microstructural characteristics of AE-C-M stabilized soil. The results show that the addition of AE significantly improves the compressive strength of the stabilized soil. When the AE content is 0.

View Article and Find Full Text PDF

We synthesized n-type polymers poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T2)] and poly{[N,N'-bis(3-(4-cardanol)propyl)-naphthalene-1,4,5,8-tetracarboxylic diimide]-alt-[5,5'-bis(2-thienyl)-2,2'-bithiophene]} [P(NDICL-T2)] with cardanol-based side chains via Stille coupling to enhance electron mobility. Replacing the 2-octyldodecyl side chain with cardanol in P(NDICL-T2) improved electron mobility due to increased chain flexibility and ordered packing. Lower glass transition temperature (), red-shifted UV-vis absorption, results from crystalline structure analysis, indicating tighter lamellar spacing and enhanced molecular ordering, and smoother surface morphology confirmed the enhanced intermolecular interactions and uniform film formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!