Multinucleated giant cells (MNGC) derived from avian blood monocytes present, like osteoclasts, an unusual cytoskeletal organization characterized by (1) cortical rings of actin filaments, (2) unique adhesion structures called podosomes and (3) vinculin containing focal complexes which are not visibly connected to F-actin structures. The Rho family of small GTPases plays an essential role in the regulation and organization of cellular cytoskeletal structures including F-actin and vinculin associated structures. Using bacterial toxins such as modified exoenzyme C3 (C3B) and toxin B or overexpression of constitutively active Rac and Rho proteins fused to the green fluorescent protein (GFP), we show that Rac and Rho play antagonistic roles in regulating the morphology of osteoclast-like cells. Inhibition of Rho by C3B triggered MNGC spreading whereas activated Rho promoted cell retraction. However, inhibition or activation of Rho led to complete disorganization of fibrillar actin structures, including podosomes. Toxin B inhibition of Rho, Rac and Cdc42 induced a time dependent F-actin and vinculin reorganization. Initially, actin fibers with associated adhesion plaques formed and disappeared subsequently. Finally, only small focal complexes remained at the MNGC periphery before retracting. At the time when actin fibers formed, we observed that Rac was already inhibited by toxin B. By combining C3B treatment and overexpression of a dominant negative form of Rac (N17Rac), we show that the formation of these focal adhesion and actin fiber structures required neither Rho nor Rac activity. Moreover, our results show that podosomes are extremely unstable structures since any modifications of Rho or Rac activity resulted in their dissociation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.113.7.1177 | DOI Listing |
Cells
January 2025
Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan.
Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo.
View Article and Find Full Text PDFSci Rep
January 2025
Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Kitakatsuragi-gun, Koryo, Nara, 635-0832, Japan.
In post-stroke persons, temporal gait asymmetry (TGA) during comfortable gait involves a combination of pure impairments and compensatory strategies. In this study, we aimed to differentiate between pure impairments and compensatory strategies underlying TGA in post-stroke individuals and identify associated clinical factors. We examined 39 post-stroke individuals who participated in comfortable walking speed (CWS) and rhythmic auditory cueing (RAC).
View Article and Find Full Text PDFCardiovasc Res
January 2025
Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Aims: Dedicator of Cytokinesis 2 (DOCK2), a member of the DOCK family of Guanine nucleotide exchange factors that specifically act on the Rho GTPases including Rac and Cdc42, plays pivotal roles in the regulation of leukocyte homeostasis. However, its functions in platelets remain unknown.
Methods And Results: Using mice with genetic deficiency of DOCK2 (Dock2-/-), we showed that Dock2-/-mice exhibited a macrothrombocytopenic phenotype characterized as decreased platelet count and enlarged platelet size by transmission electron microscopy.
Int J Mol Sci
December 2024
Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA.
PAK2 is a serine-threonine kinase and a member of the p21-activated kinase (PAK) family. PAK2 is activated by GTP-bound rho family GTPases, Rac, and Cdc42, and it regulates actin dynamics, cell adhesion to the extracellular matrix, and cell motility. In various types of cancers, PAK2 has been implicated in the regulation of cancer cell proliferation, cell cycle, and apoptosis.
View Article and Find Full Text PDFCells
December 2024
Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan.
encodes a small GTPase of the Rho family that plays a critical role in actin cytoskeleton remodeling and intracellular signaling regulation. Pathogenic variants in , all of which reported thus far affect conserved residues within its functional domains, have been linked to neurodevelopmental disorders characterized by diverse phenotypic features, including structural brain anomalies and facial dysmorphism (NEDBAF). Recently, a novel de novo variant (NM_005052.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!