Roles of the ccoGHIS gene products in the biogenesis of the cbb(3)-type cytochrome c oxidase.

J Mol Biol

Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.

Published: March 2000

In many bacteria the ccoGHIS cluster, located immediately downstream of the structural genes (ccoNOQP) of cytochrome cbb(3) oxidase, is required for the biogenesis of this enzyme. Genetic analysis of ccoGHIS in Rhodobacter capsulatus demonstrated that ccoG, ccoH, ccoI and ccoS are expressed independently of each other, and do not form a simple operon. Absence of CcoG, which has putative (4Fe-4S) cluster binding motifs, does not significantly affect cytochrome cbb(3) oxidase activity. However, CcoH and CcoI are required for normal steady-state amounts of the enzyme. CcoI is highly homologous to ATP-dependent metal ion transporters, and appears to be involved in the acquisition of copper for cytochrome cbb(3) oxidase, since a CcoI-minus phenotype could be mimicked by copper ion starvation of a wild-type strain. Remarkably, the small protein CcoS, with a putative single transmembrane span, is essential for the incorporation of the redox-active prosthetic groups (heme b, heme b(3 )and Cu) into the cytochrome cbb(3) oxidase. Thus, the ccoGHIS products are involved in several steps during the maturation of the cytochrome cbb(3) oxidase.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.2000.3555DOI Listing

Publication Analysis

Top Keywords

cytochrome cbb3
20
cbb3 oxidase
20
ccoh ccoi
8
cytochrome
6
oxidase
6
cbb3
5
roles ccoghis
4
ccoghis gene
4
gene products
4
products biogenesis
4

Similar Publications

Background: In biomanufacturing of surface-active agents, such as rhamnolipids, excessive foaming is a significant obstacle for the development of high-performing bioprocesses. The exploitation of the inherent tolerance of Pseudomonas putida KT2440, an obligate aerobic bacterium, to microaerobic conditions has received little attention so far. Here low-oxygen inducible promoters were characterized in biosensor strains and exploited for process control under reduction of foam formation by low aeration and stirring rates during biosynthesis of rhamnolipids.

View Article and Find Full Text PDF

Pseudomonas aeruginosa T6SS secretes an oxygen-binding hemerythrin to facilitate competitive growth under microaerobic conditions.

Microbiol Res

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Pseudomonas aeruginosa is a prominent respiratory pathogen in cystic fibrosis (CF) patients, thriving in the hypoxic airway mucus. Previous studies have established the role of the oxygen-binding hemerythrin, Mhr, in enhancing P. aeruginosa's fitness under microaerobic conditions.

View Article and Find Full Text PDF

Removal of BPA by Pseudomonas asiatica P1: Synergistic response mechanism of toxicity resistance and biodegradation.

Ecotoxicol Environ Saf

December 2024

Ministry of Education, Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun 130117, China. Electronic address:

Bisphenol A (BPA) is a globally concerning toxic pollutant, and microbial degradation is considered an effective method to treat BPA contamination. However, the inherent microbial toxicity of BPA is often overlooked, particularly the microbial mechanisms of resistance and detoxification against BPA. This study found that under the toxic stress of BPA, cbb3-type cytochrome c oxidase (cbb3-Cox) in the cells of Pseudomonas asiatica P1 (P.

View Article and Find Full Text PDF

The small membrane protein CcoS is involved in cofactor insertion into the cbb-type cytochrome c oxidase.

Biochim Biophys Acta Bioenerg

January 2025

Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany. Electronic address:

Respiratory complexes, such as cytochrome oxidases, are cofactor-containing multi-subunit protein complexes that are critically important for energy metabolism in all domains of life. Their intricate assembly strictly depends on accessory proteins, which coordinate subunit associations and cofactor deliveries. The small membrane protein CcoS was previously identified as an essential assembly factor to produce an active cbb-type cytochrome oxidase (cbb-Cox) in Rhodobacter capsulatus, but its function remained unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The endosymbiont Candidatus Azoamicus ciliaticola was identified as a potential ATP producer for a specific anaerobic ciliate, similar to the role of mitochondria in other cells.
  • Researchers have reported four new complete genomes of related respiratory endosymbionts found in groundwater across California, Ohio, and Germany, contributing to our understanding of microbial diversity.
  • These endosymbionts are part of a newly defined lineage and have been shown to possess a cytochrome cbb oxidase for aerobic respiration, indicating they can thrive in various environments worldwide.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!