Murine cytomegalovirus homologues of cellular immunomodulatory genes.

Intervirology

Virology Section, Animal Health Trust, Newmarket, UK.

Published: May 2000

The study of 'molecular mimicry' or 'genetic piracy', with respect to the utilisation of cellular genes captured and modified during the course of virus evolution, has been an area of increasing research with the expansion in virus genome sequencing. Examples of cellular immunomodulatory genes which have been captured from hosts have been identified in a number of viruses. This review concentrates upon studies of murine cytomegalovirus (MCMV), investigating the functions of viral genes homologous to G protein-coupled receptors, MHC class I and chemokines. The study of recombinant MCMV engineered with specific disruptions of these genes has revealed their significance during virus replication and dissemination within the host. In the case of the latter two classes of genes, evidence suggests they interfere with cellular immune responses, although the detailed mechanisms underlying this interference have yet to be delineated.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000053969DOI Listing

Publication Analysis

Top Keywords

murine cytomegalovirus
8
cellular immunomodulatory
8
immunomodulatory genes
8
genes captured
8
genes
6
cytomegalovirus homologues
4
cellular
4
homologues cellular
4
genes study
4
study 'molecular
4

Similar Publications

Human cytomegalovirus (HCMV) rarely infects the brain following infection of adult individuals. However, the virus readily infects the brain during congenital HCMV (cHCMV) infection, frequently causing severe neurodevelopmental and neurological sequelae. Interestingly, although the incidence of cHCMV infection is 0.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) infects a wide range of cell types, including tumor-associated myeloid cells and glioma cells. Clinical observations suggest a potential link between long-term glioblastoma survival and CMV reactivation. We herein present an oncolytic CMV vector, AD169r, which includes a restored pentamer complex gH/gL/pUL128-131 and the removal of UL1-UL20 and UL/b' sequences.

View Article and Find Full Text PDF

Group 1 innate lymphoid cells (ILCs) encompass NK cells and ILC1s, which have non-redundant roles in host protection against pathogens and cancer. Despite their circulating nature, NK cells can establish residency in selected tissues during ontogeny, forming a distinct functional subset. The mechanisms that initiate, maintain, and regulate the conversion of NK cells into tissue-resident NK (trNK) cells are currently not well understood.

View Article and Find Full Text PDF

Immune responses drive chorioretinitis and retinal pathology after neonatal CMV infection.

Sci Adv

November 2024

Department of Microbiology and Immunology, Jefferson Center for Vaccines and Pandemic Preparedness, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.

Human cytomegalovirus (CMV) causes a common congenital infection leading to long-term neurological impairments including brain, cochlear, and ocular pathology. Infection of newborn mice with murine (M)CMV is an established model of neuropathology caused by congenital CMV infection, with recent work suggesting that brain pathology may be driven by immune responses. In the eye, however, CMV retinitis is thought to result from virus-driven necrosis in the absence of T cell responses.

View Article and Find Full Text PDF

Unlabelled: Cytomegaloviruses are highly species-specific as they replicate only in cells of their own or a closely related species. For instance, human cytomegalovirus cannot replicate in rodent cells, and mouse cytomegalovirus (MCMV) cannot replicate in human and monkey cells. However, the mechanisms underlying the host species restriction remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!