Approaches to the design of effective HIV-1 protease inhibitors.

Curr Med Chem

Laboratoire de Chimie Moléculaire Structurale, Facultés Universitaires Notre-Dame de la Paix, 61 rue de Bruxelles, Namur, B-5000, Belgium.

Published: April 2000

Recently, western countries have recorded a decrease in the death rate imputed to AIDS. This success has been largely attributed to the presence on the market of chemotherapies that inhibit the infectivity of the predominant causative agent, the HIV-1 virus, by targeting essential viral enzymes. One of these is the protease (HIV-1 PR) whose activity is a prerequisite for viral replication. Two main sites have been identified as potential targets for the inhibition of HIV-1 PR, the active site and the interface, the latter being largely responsible for the stabilization of the enzyme dimeric structure. The compounds that have reached clinical application so far target the active site of HIV-1 PR. These molecules act as transition state analogues and result from modifications of the peptidic scaffold into peptidomimetics. In order to improve their bioavailability, systematic biological screening and de novo design have been used to suggest new non-peptide inhibitors combining both antiviral potency and favorable pharmacokinetic properties. In parallel, compounds targeting other potential sites of inhibition have been tested. Peptides and peptidomimetics based on the terminal sequence of the enzyme, a site which is proposed to be less susceptible to mutations, have been shown to lead to HIV-1 PR inactivation. Cupric ion was described to bind a sequence on the protease surface, which includes cysteine and histidine residues, leading to the inhibition of the enzyme. In the future, these non-active site inhibitors could provide an alternative in anti-HIV drug combination strategies.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867003375146DOI Listing

Publication Analysis

Top Keywords

active site
8
hiv-1
6
approaches design
4
design effective
4
effective hiv-1
4
hiv-1 protease
4
protease inhibitors
4
inhibitors western
4
western countries
4
countries recorded
4

Similar Publications

Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, and Anopheles stephensi.

View Article and Find Full Text PDF

The study was conducted to detect the occurrence and phenotypic resistance pattern of ESBL-producing Enterobacteriaceae in livestock using docking based analysis to reveal the classes of antibiotics against which ESBL-producers are active. Rectal swabs from healthy cattle (n=100), goats (n=88), pigs (n=66) were collected from backyard farms in Andaman and Nicober island (India). In total, 304 isolates comprising E.

View Article and Find Full Text PDF

SAMHD1 shapes deoxynucleotide triphosphate homeostasis by interconnecting the depletion and biosynthesis of different dNTPs.

Nat Commun

January 2025

Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.

SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.

View Article and Find Full Text PDF

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP)-dependent enzymes are involved in many cellular processes and possess unequalled catalytic versatility. Rational design through site-directed mutagenesis is a powerful strategy for creating tailor-made enzymes for a wide range of biocatalytic applications. PLP-dependent methionine γ-lyase (MGL), which degrades sulfur-containing amino acids, is an encouraging enzyme for many therapeutic purposes - from combating bacterial resistant strains and fungi to antitumor activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!