Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells.

J Nutr

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

Published: March 2000

To understand how blood glucose level is lowered by oral administration of vinegar, we examined effects of acetic acid on glucose transport and disaccharidase activity in Caco-2 cells. Cells were cultured for 15 d in a medium containing 5 mmol/L of acetic acid. This chronic treatment did not affect cell growth or viability, and furthermore, apoptotic cell death was not observed. Glucose transport, evaluated with a nonmetabolizable substrate, 3-O-methyl glucose, also was not affected. However, the increase of sucrase activity observed in control cells (no acetic acid) was significantly suppressed by acetic acid (P < 0.01). Acetic acid suppressed sucrase activity in concentration- and time-dependent manners. Similar treatments (5 mmol/L and 15 d) with other organic acids such as citric, succinic, L-maric, L-lactic, L-tartaric and itaconic acids, did not suppress the increase in sucrase activity. Acetic acid treatment (5 mmol/L and 15 d) significantly decreased the activities of disaccharidases (sucrase, maltase, trehalase and lactase) and angiotensin-I-converting enzyme, whereas the activities of other hydrolases (alkaline phosphatase, aminopeptidase-N, dipeptidylpeptidase-IV and gamma-glutamyltranspeptidase) were not affected. To understand mechanisms underlying the suppression of disaccharidase activity by acetic acid, Northern and Western analyses of the sucrase-isomaltase complex were performed. Acetic acid did not affect the de novo synthesis of this complex at either the transcriptional or translational levels. The antihyperglycemic effect of acetic acid may be partially due to the suppression of disaccharidase activity. This suppression seems to occur during the post-translational processing.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/130.3.507DOI Listing

Publication Analysis

Top Keywords

acetic acid
40
disaccharidase activity
16
sucrase activity
12
acetic
10
acid
9
caco-2 cells
8
glucose transport
8
increase sucrase
8
acid suppressed
8
activity acetic
8

Similar Publications

Two NADPH-dependent 2-ketogluconate reductases involved in 2-ketogluconate assimilation in sp. strain CHM43.

Appl Environ Microbiol

January 2025

Joint Degree Program of Kasetsart University and Yamaguchi University, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.

Unlabelled: Incomplete oxidation of glucose by sp. strain CHM43 produces gluconic acid and then 2- or 5-ketogluconic acid. Although 2-keto-D-gluconate (2KG) is a valuable compound, it is sometimes consumed by itself via an unknown metabolic pathway.

View Article and Find Full Text PDF

Background: Various countries have instituted risk governance measures to control and minimize the risks of chemicals at the national and international levels. Activities typically include risk assessment based on ) hazard and exposure assessments; ) setting limits on the production, use, and emissions of chemicals; ) enforcement of regulations; and ) monitoring the effectiveness of the measures taken. These steps largely depend on chemical analysis and access to pure chemical reference standards.

View Article and Find Full Text PDF

Crop residues have shown promise as non-conventional feed sources to enhance animal health and growth. This study evaluated the effects of chili straw (CS) on rumen fermentation, meat quality, amino and fatty acid composition, and rumen microbial diversity in sheep. Fifty F1 Dorper×Hu lambs (29.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent liver pathology in need of novel pharmacological treatments to complement lifestyle-based interventions. Nuclear receptor agonists have been under scrutiny as potential pharmacological targets and as of today, resmetirom, a thyroid hormone receptor b agonist, is the only approved agent. The dual PPAR α and δ agonist elafibranor has also undergone extensive clinical testing, which reached the phase III clinical trial but failed to demonstrate a beneficial effect on MASLD.

View Article and Find Full Text PDF

Introduction: Enterotoxic (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!