Unlabelled: Cyclooxygenase (COX) products play an important role in modulating sepsis and subsequent endothelial injury. We hypothesized that COX inhibitors may attenuate endothelial dysfunction during sepsis, as measured by receptor-mediated bradykinin (BK)-induced vasoconstriction and/or receptor-independent hypoxic pulmonary vasoconstriction (HPV). Rats were administered intraperitoneally a nonselective COX inhibitor (indomethacin, 5 or 10 mg/kg) or a selective COX-2 inhibitor (NS-398, 4 or 8 mg/kg) 1 h before lipopolysaccharide (LPS, 15 mg/kg), or saline (control). Three hours later, the rats were anesthetized, the lungs were isolated, and pulmonary vasoreactivity was assessed with BK (0.3, 1.0, and 3.0 microg) and HPV (3% O(2)). Perfusion pressure was monitored as an index of vasoconstriction. To investigate what receptor-subtype is mediating BK responses, the BK(1)-receptor antagonist des-Arg(9)-[Leu(8)]-BK, the BK(2)-receptor antagonist HOE-140, or the thromboxane A(2)-receptor antagonist SQ 29548 (all at 1 microM) were added to the perfusate. BK-induced vasoconstriction was significantly increased in LPS lungs (1.4-5.2 mm Hg) compared with control (0.1-1.1 mm Hg). In LPS lungs, indomethacin 10 mg/kg significantly decreased BK vasoconstriction by 78% +/- 9%, whereas 5 mg/kg did not. NS-398, 4 mg/kg, significantly attenuated BK vasoconstriction at 0.3 microg (71% +/- 7%) and 1.0 microg (56% +/- 12%), whereas 8 mg/kg attenuated 0.3 microg BK (57% +/- 14%), compared with LPS lungs. HPV was increased in LPS lungs (21.5 +/- 2 mm Hg) compared with control lungs (9.8 +/- 0.6 mm Hg). Indomethacin 5 mg/kg increased HPV in LPS lungs; otherwise, HPV was not altered by COX inhibition. BK-induced vasoconstriction was prevented by BK(2), but not BK(1) or thromboxane A(2)-receptor antagonism. This study suggests that nonselective COX inhibition, and possibly inhibition of the inducible isoform COX-2, may attenuate sepsis-induced, receptor-mediated vasoconstriction in rats.
Implications: This study demonstrated that, in an isolated rat lung model, nonselective inhibition of the cyclooxygenase pathway, and possibly selective inhibition of the inducible cyclooxygenase-2 isoform, may attenuate sepsis-induced endothelial dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000539-200003000-00023 | DOI Listing |
Chin Med J Pulm Crit Care Med
December 2024
Medical Research Center; The Zhejiang Key Laboratory of Intelligent Cancer, Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
Background: Necroptosis is a form of programmed cell death resulting in tissue inflammation due to the release of intracellular contents. Its role and regulatory mechanism in the context of acute lung injury (ALI) are unclear. Parkin (Prkn), an E3 ubiquitin ligase, has recently been implicated in the regulation of necroptosis.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Objective: Multi-organ failure frequently complicates sepsis, with lungs being the primary target. T helper (Th) cell activation and phenotypic imbalance among them contribute significantly to sepsis-associated lung injury. Additionally, the complement system could regulate the polarized phenotype of T lymphocytes.
View Article and Find Full Text PDFPlanta Med
January 2025
3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland.
Lonicera caerulea var. kamtschatica (LCK), known as blue honeysuckle or haskap berry, is rich in bioactive compounds such as polyphenols, flavonoids, and anthocyanins, which are linked to various health benefits, including anti-inflammatory and antioxidant properties. The research specifically investigates the effects of an LCK extract that has been standardized to contain a minimum of 15% anthocyanins on inflammation and oxidative stress at the cellular level.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571157 China; Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199 China. Electronic address:
Acute pulmonary inflammation is a severe lower respiratory tract infection. Sinensetin (SIN), a polymethoxyflavone with strong anti-inflammatory properties, is known to ameliorate LPS-induced acute inflammatory lung injury, but its molecular mechanisms are not fully understood. This study aimed to provide insight into the pharmacological mechanisms of SIN in attenuating acute pulmonary inflammation.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!