Pneumatically assisted electrospray mass spectrometry was evaluated as a complementary detection technique to UV absorbance, for determination of specific radioactivity of tracer molecules to be used in positron emission tomography. Tracers labelled with radionuclides having short half-lives can be synthesised with high specific radioactivity. The UV absorbance detection that is commonly used for the determination does not always have the sensitivity required for those analyses. In comparison, mass spectrometry gave improved detection limits in all but one (nicotine) of the 12 compounds studied. The magnitude of this improvement was more than 100-fold for the compounds ketamine (2-methylamino-2-(2-chloro-phenyl)cyclohexanone), SCH-23390 ((R)-(+)-7-chloro-8-hydroxy-1-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-b enzazepine) and N-methyl-piperidylbenzilate. These improved detection limits, specificity, plus the added certainty of product identity provided by mass spectral data demonstrated the value of the mass spectrometer as a complementary detector in the determination of specific radioactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0731-7085(99)00047-3 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.
Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:
Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia.
Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.
View Article and Find Full Text PDFIsotopes Environ Health Stud
January 2025
School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, South Africa.
This study presents an investigation into the natural radioactivity levels of U, Th, and K using a thallium-doped sodium iodide (NaI(TI)) detector and associated radiological hazards in river sediments, specifically sand, which serves as a crucial building material in the KwaZulu-Natal Province of South Africa. The assessment aims to provide insights into potential radiological risks posed by the utilization of these sediments in construction activities. The mean activity concentrations of U, Th, and K are 145.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Chemistry, Chulalongkorn University, Bangkok, Thailand.
The accumulation pattern of some inorganic pollutants in quarry sites around Ogun State was modeled using a Fuzzy comprehensive assessment (FCA). Potentially toxic elements (PTEs) and naturally occurring radionuclides materials (NORMs) were assessed from soil samples collected from ten quarry sites in three districts (Odeda, Ajebo, and Ijebu Ode) in Ogun State. Three (3) NORMs ( K, U, Th) were assessed using gamma spectrometer with a NaI detector while ten (10) PTEs (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by digestion method using Inductively coupled plasma optical emission spectrophotometer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!