A novel tandem time-of-flight (TOF) mass spectrometer has been developed for studying the photo-induced dissociation of large molecules and elemental clusters. It consists of a linear first stage TOF analyser for primary mass separation and precursor ion selection, and a second orthogonal reflecting field TOF analyser for product ion analysis. The instrument is equipped with a large volume throughput molecular beam source chamber allowing the production of jet-cooled molecules and molecular clusters, as well as elemental clusters, using either a pulsed laser vaporisation source (LVS) or a pulsed are cluster ion source (PACIS). A second differentially pumped chamber can be used with effusive sources, or for infrared laser desorption of large molecules, followed by laser ionisation. These primary ions can then be irradiated with a second, high energy laser to induce photodissociation. Detailed information about the fragmentation mechanisms can be deduced from the product ion mass spectra. Preliminary results on the photo-induced dissociation (PID) of the molecule ion of aniline at 266 nm are presented. In this case the molecule ions were generated via two-photon laser ionisation at 266 nm using an effusive source. Results for the collision-induced dissociation (CID) of the aniline molecule ion, using a commercial mass spectrometer equipped with an atmospheric pressure electrospray ionisation interface, are also presented. Copyright 2000 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1097-0231(20000315)14:5<361::AID-RCM891>3.0.CO;2-E | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!