Saccharomyces cerevisiae cells, Kluyveromyces marxianus cells, inulase, glucose oxidase, chloroplasts, and mitochondria were immobilized in calcium alginate gels. Ethanol production from glucose solutions by an immobilized preparation of S. cerevisiae was demonstrated over a total of twenty-three days, and the half-life of such a preparation was shown to be about ten days. Immobilized K. marxianus, inulase, and glucose oxidase preparations were used to demonstrate the porosity and retraining properties of calcium alginate gels. Calcium alginate-immobilized chloroplasts were shown to perform the Hill reaction. Some experiments with immobilized mitochondria are reported.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1097-0290(20000320)67:6<726::aid-bit11>3.0.co;2-9DOI Listing

Publication Analysis

Top Keywords

calcium alginate
12
alginate gels
12
inulase glucose
8
glucose oxidase
8
immobilization microbial
4
microbial cells
4
cells subcellular
4
subcellular organelles
4
organelles enzymes
4
calcium
4

Similar Publications

Alginate-Based Hydrogels with Amniotic Membrane Stem Cells for Wound Dressing Application.

Stem Cells Cloning

January 2025

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.

Objective: Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure.

View Article and Find Full Text PDF

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

The remediation of oil-contaminated soil poses significant environmental challenges, often necessitating innovative approaches for effective and sustainable solutions. This study focuses on the synthesis, characterisation, and application of biodegradable capsules loaded with surfactant for enhanced oil remediation of a clean sand. By controlling the release properties of capsules, the research aims to overcome the limitations of conventional surfactant-based remediation methods, such as rapid washout and reduced efficacy over time.

View Article and Find Full Text PDF

Hydrogels are popular materials for desalination and can significantly reduce the vaporization enthalpy of water; however, there are few reports on hydrogels with a controllable multilevel structural design for water evaporation. Herein, a calcium alginate and traditional Chinese ink-based evaporator (CIE) are proposed and fabricated using directed freezing technology to construct radial channels, followed by freeze-drying and physical cross-linking. Because of the squeezing of ice crystals and the shaping effect of the PDMS template, the prepared evaporator exhibits a sea-urchin-shaped highly geometrical centrosymmetric structure with numerous multilevel pore channels, which promotes the rapid transport of water under different solar incidence angles as the sun rotates as well as overcomes the structural shrinkage of the hydrogel caused by insufficient water supply.

View Article and Find Full Text PDF

Bioluminescence inhibition (BLI) measurements in bioluminescent bacteria (BB) is perceived as a potential qualitative and quantitative indicator of hazardous materials. Acute but minor fluctuations in osmolarity and pH do not affect the living systems significantly. However, significant BLI is observed from marine BB due to acute osmolarity or pH changes that may affect the bioassay sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!