Mutations in the ATRX gene are associated with an X-linked mental retardation (XLMR) syndrome most often accompanied by alpha-thalassaemia (ATR-X syndrome). The ATRX gene encodes a predicted protein of 280 kDa featuring a PHD zinc finger motif and an ATPase/helicase domain of the SWI/SNF type; the vast majority of mutations in the ATRX gene fall within these two motifs. Although these domains are suggestive of a role for ATRX in transcriptional regulation by affecting chromatin structure and/or function, the precise cellular role of the ATRX protein remains undefined. Using indirect immunofluorescence and biochemical fractionation, we demonstrate that the ATRX protein has a punctate nuclear staining pattern and that it is tightly associated with the nuclear matrix at interphase. At the onset of M phase, the ATRX protein was associated mainly with condensed chromatin. The association of the ATRX protein with chromosomes at mitosis is concomitant with phosphorylation of the protein and its association with heterochromatin protein 1alpha (HP1alpha). The phosphorylation-dependent changes in localization between the nuclear matrix and condensed chromatin are consistent with a dual role for ATRX, possibly involving gene regulation at interphase and chromosomal segregation at mitosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/9.4.539 | DOI Listing |
Mov Disord
January 2025
Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Objective: Pathogenic variants in B-cell receptor-associated protein (BCAP31) are associated with X-linked, deafness, dystonia and cerebral hypomyelination (DDCH) syndrome. DDCH is congenital and non-progressive, featuring severe intellectual disability (ID), variable dysmorphism, and sometimes associated with shortened survival. BCAP31 encodes one of the most abundant chaperones, with several functions including acting as a negative regulator of endoplasmic reticulum (ER) calcium ion (Ca) concentration.
View Article and Find Full Text PDFCell Prolif
January 2025
Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China.
Pigs are important agricultural animals whose growth rate and meat production performance are related to muscle development. Musculoskeletal embryonic nuclear protein 1 (MUSTN1) participates in various biological processes, including myogenesis and growth in animals, but the physiological functions and mechanisms of porcine MUSTN1 on muscle development are unclear; thus, we aimed to elucidate them. We found that MUSTN1 was highly expressed in the muscles of fast-growing pigs.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR.
View Article and Find Full Text PDFPLoS Genet
January 2025
Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy.
The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Ophthalmology, Eye Center, UC Davis School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
Background/objective: The Rs1 exon-1-del rat (Rs1KO) XLRS model shows normal retinal development until postnatal day 12 (P12) when small cystic spaces start to form in the inner nuclear layer. These spaces enlarge rapidly, peak at P15, and then collapse by P19.
Methods: We explored the possible involvement of Kir4.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!