The Burkholderia cepacia complex currently comprises five genomic species, i.e., B. cepacia genomovar I, B. multivorans (formerly known as B. cepacia genomovar II), B. cepacia genomovar III, B. cepacia genomovar IV, and B. vietnamiensis (also known as B. cepacia genomovar V). In the absence of straightforward diagnostic tests for the identification of B. cepacia genomovars I, III, and IV, the last two genomic species were not formally classified as novel Burkholderia species (genomovar I contains the type strain and therefore retains the name B. cepacia). In the present study, we describe differential biochemical tests and a recA gene-based PCR assay for the routine identification of strains currently known as B. cepacia genomovar IV and propose formal classification of this organism as Burkholderia stabilis sp. nov. B. stabilis can indeed be differentiated from all other B. cepacia complex strains by the absence of beta-galactosidase activity, from strains of B. cepacia genomovars I and III and B. vietnamiensis by the inability to oxidize sucrose, and from B. multivorans by the lack of growth at 42 degrees C. In addition, analysis with the recA gene-derived primers BCRG41 (5'-ACCGGCGAGCAGGCGCTT-3') and BCRG42 (5'-ACGCCATCGGGCATGGCA-3') specifically allows the detection of B. stabilis strains in a conventional PCR assay. Examination of a set of 21 B. stabilis strains by means of random amplified polymorphic DNA analysis and pulsed-field gel electrophoresis typing suggested that the genome of this organism is highly conserved, which is in sharp contrast to the generally accepted genomic diversity, variability, and plasticity among B. cepacia strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC86333PMC
http://dx.doi.org/10.1128/JCM.38.3.1042-1047.2000DOI Listing

Publication Analysis

Top Keywords

cepacia genomovar
28
cepacia
13
burkholderia stabilis
8
stabilis nov
8
burkholderia cepacia
8
genomovar
8
cepacia complex
8
genomic species
8
cepacia genomovars
8
genomovars iii
8

Similar Publications

Identification of strains that express a -like capsular polysaccharide.

Microbiol Spectr

March 2024

Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.

and are Gram-negative, soil-dwelling bacteria that are found in a wide variety of environmental niches. While is the causative agent of melioidosis in humans and animals, members of the complex typically only cause disease in immunocompromised hosts. In this study, we report the identification of strains isolated from either patients or soil in Laos and Thailand that express a -like 6-deoxyheptan capsular polysaccharide (CPS).

View Article and Find Full Text PDF

Burkholderia vietnamiensis causing infections in noncystic fibrosis patients in a tertiary care hospital in Mexico.

Diagn Microbiol Infect Dis

February 2023

Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, Mexico. Electronic address:

Burkholderia cepacia complex (Bcc) species are opportunistic pathogens widely distributed in the environment and often infect people with cystic fibrosis (CF). This study aims to determine which genomovars of the Bcc can cause infections in non-CF patients from a tertiary care hospital in Mexico and if they carry virulence factors that could increase their pathogenicity. We identified 23 clinical isolates that carry the recA gene.

View Article and Find Full Text PDF

Purpose: Burkholderia is a Gram-negative opportunistic bacterium capable of causing severe nosocomial infections. The aim of this study was to characterize Burkholderia cepacia complex and to compare different molecular methods used in its characterization.

Methods: In this study, 45 isolates of Burkholderia cepacia complex (Bcc) isolated from clinical cases were subjected to RAPD (Random amplified polymorphic DNA), recA-RFLP (Restriction fragment length polymorphism), 16SrDNA-RFLP, whole-cell protein analysis, recA DNA sequencing and biofilm assay.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates Burkholderia cepacia and Burkholderia contaminans, pathogens found in the potable water dispenser of the International Space Station, by sequencing their genomes and conducting various tests.
  • The isolates from the ISS show over 99% genetic similarity and likely originated from just two main populations, indicating a closely related lineage.
  • While these pathogens retain their virulence, they don't appear to be more harmful than similar strains on Earth, and they remain susceptible to antibiotics commonly used in clinical settings.
View Article and Find Full Text PDF

Burkholderia cepacia complex (Bcc) includes several phenotypically similar but genotypically distinct gram-negative bacteria (GNB) that can colonize the respiratory tract of Cystic Fibrosis (CF) patients. Pathogens are difficult to treat due to intrinsic resistance to multiple antibiotics and are associated to a more rapid decline in lung function and to increased mortality, particularly after lung transplantation. For all these reasons, chronic infection by Burkholderia (B) cenocepacia is presently considered a relative or absolute contraindication in almost all lung transplant centres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!