Kinetic analysis of the internalization and recycling of [3H]TRH and C-terminal truncations of the long isoform of the rat thyrotropin-releasing hormone receptor-1.

Biochem J

Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.

Published: March 2000

The C-terminal tail of the long splice variant of the rat thyrotropin-releasing hormone (TRH) receptor-1 (TRHR-1L) comprises around 93 amino acids. A series of C-terminal truncations was constructed and expressed transiently in HEK-293 cells. The extent of steady-state internalization of these in response to [(3)H]TRH was dependent upon the degree of truncation. Little effect was produced by deletion of the C-terminal to 50 amino acids, although there was a substantial decrease in the extent of internalization by deletion to 45-46 amino acids. The rate of internalization of TRHR-1L in response to ligand was substantially decreased by the acid-wash procedures often used in the analysis of cellular distribution of receptors with peptide ligands, and thus an alternative procedure using a Mes-containing buffer was employed in the present study. Apart from a truncation anticipated to eliminate post-translational acylation of the re-ceptor, which altered both the association and dissociation rates of [(3)H]TRH, the kinetics of ligand binding were unaffected by C-terminal truncation. Equally, the rate of recycling to the plasma membrane of internalized receptors was unaffected by C-terminal truncation. Although the extent of internalization of the full-length receptor was impaired by pre-exposure of cells to TRH, this was not true of C-terminal truncation mutants, which displayed limited steady-state internalization ratios. A mutant with a substantial C-terminal deletion also displayed decreased functional desensitization compared with the full-length receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220904PMC

Publication Analysis

Top Keywords

amino acids
12
c-terminal truncation
12
c-terminal
8
c-terminal truncations
8
rat thyrotropin-releasing
8
thyrotropin-releasing hormone
8
steady-state internalization
8
extent internalization
8
unaffected c-terminal
8
full-length receptor
8

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!