Regulation of E-cadherin: does hypoxia initiate the metastatic cascade?

Mol Pathol

Department of Anatomical Pathology, School of Pathology, South African Institute for Medical Research, Johannesburg, South Africa.

Published: August 1999

The ability of tumours to metastasis is regarded as one of the hallmarks of malignancy. The process through which tumours evolve to achieve this has been termed the metastatic cascade. This cascade has been the subject of much investigation over many years. One of the vital events identified by these investigations is the reduction of adhesion between tumour cells facilitating invasion of the surrounding tissues and vascular channels, ultimately leading to the development of a distant metastasis. E-cadherin and its associated catenin complex have been identified as key molecules in cell adhesion. This review looks at the structure and interaction of the E-cadherin-catenin complex and the factors that appear to regulate E-cadherin expression and thus cell adhesion. From the data gathered, it has become possible to propose the hypothesis that the development of tumour hypoxia is the initiating factor that sets the tumour on the road to metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC395697PMC
http://dx.doi.org/10.1136/mp.52.4.179DOI Listing

Publication Analysis

Top Keywords

cell adhesion
8
regulation e-cadherin
4
e-cadherin hypoxia
4
hypoxia initiate
4
initiate metastatic
4
metastatic cascade?
4
cascade? ability
4
ability tumours
4
tumours metastasis
4
metastasis regarded
4

Similar Publications

Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations.

Adv Sci (Weinh)

January 2025

LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.

Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane.

View Article and Find Full Text PDF

Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease.

Int Angiol

December 2024

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -

The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and the most common form is coronary artery disease (CAD). Treatment options include coronary artery bypass surgery (CABG) or percutaneous heart intervention (PCI), but both have drawbacks. Bare metal stents (BMS) are commonly used to treat CAD; however, they lead to restenosis.

View Article and Find Full Text PDF

Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines.

In Vitro Model

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France.

Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells.

View Article and Find Full Text PDF

Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.

Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!