The maturity-onset diabetes of the young (MODY), an autosomal dominant form of non-insulin dependent diabetes mellitus (NIDDM), is caused by mutations in the glucokinase (GK, MODY 2) and in the hepatocyte nuclear factor 1a (MODY 3) and 4a (MODY 1) genes. We have screened the glucokinase gene by the polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) in fifteen subjects with clinical characteristics of MODY and one parent with NIDDM, impaired glucose tolerance or gestational diabetes. PCR products with abnormal mobility in DGGE were directly sequenced. We have identified four mutant alleles, three of them (G80S, E221K, G227C) are new missense mutations located in or near the region of the active site cleft of the enzyme. The mutations co-segregate with hyperglycemia in the families of the three probands, whose biochemical and clinical phenotype is similar to other individuals with MODY 2 mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1098-1004(1998)12:2<136::AID-HUMU11>3.0.CO;2-0DOI Listing

Publication Analysis

Top Keywords

missense mutations
8
mutations glucokinase
8
glucokinase gene
8
g80s e221k
8
e221k g227c
8
maturity-onset diabetes
8
diabetes young
8
young mody
8
mody mutations
8
mody
7

Similar Publications

Aims: Sarcoendoplasmic reticulum Ca-ATPase 2 (SERCA2), encoded by ATP2A2, is a key protein involved in intracellular Ca homeostasis. The SERCA2a isoform is predominantly expressed in cardiomyocytes and type I myofibres. Variants in this gene are related to Darier disease, an autosomal dominant dermatologic disorder, but have never been linked to myopathy.

View Article and Find Full Text PDF

Congenital hypogonadotropic hypogonadism (CHH) can cause delayed secondary sexual characteristics and contribute to juvenile osteoporosis, with multiple causative genes having been reported. We treated a 27-year-old man diagnosed with central hypogonadism, presenting with delayed secondary sexual characteristics and juvenile osteoporosis, using bone resorption inhibitors and testosterone therapy. Genetic testing revealed missense variants both in the fibroblast growth factor receptor 1 () and gonadotropin-releasing hormone receptor () genes, a combination that has not been previously reported.

View Article and Find Full Text PDF

Background: Anticoagulant rodenticides (ARs) are a very effective tool to control rodent pest populations. Nevertheless, AR resistance has been documented worldwide. ARs block the cycle of vitamin K, leading to the death of the animal by internal bleeding: mutations in Vkorc1 gene can cause resistance.

View Article and Find Full Text PDF

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

A Neuron-Like Cellular Model for Severe Tinnitus Associated with Rare Variations in the ANK2 Gene.

Mol Neurobiol

January 2025

Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.

Tinnitus is the perception of sound without an external source, often associated with changes in the auditory pathway and different brain regions. Recent research revealed an overload of missense variants in the ANK2 gene in individuals with severe tinnitus. ANK2, encoding ankyrin-B, regulates axon branching and inhibits microtubule invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!