Platelet-derived growth factor (PDGF) is a dimeric growth factor acting through tyrosine kinase alpha- and beta-receptors. In both receptors, the extracellular parts are composed of five Ig-like domains. Functional mapping of the extracellular part of the receptors have shown that ligand-binding occurs to Ig-like domains 2 and 3 and that Ig-like domain 4 is involved in receptor-receptor interactions. Recombinant GST-fusion proteins of PDGF alpha-receptor Ig-like domains 1-4 and beta-receptor Ig-like domains 1-3 (alphaRD1-4-GST and betaRD1-3-GST) were generated and compared with their cleaved counterparts (alphaRD1-4 and betaRD1-3) with regard to their ability to block PDGF binding to cell surface receptors. In the case of both the alpha- and the beta-receptors, 100-1000-fold lower concentrations of the GST-fusion proteins were required, as compared to the cleaved forms, for inhibition of PDGF binding to cell surface receptors. alphaRD1-4-GST and betaRD1-3-GST, in contrast to alphaRD1-4 and betaRD1-3, were shown to occur as ligand independent dimers. Covalently cross-linked alphaRD1-4 dimers displayed a 50-fold increased potency as compared to alphaRD1-4. We thus conclude that the dimeric nature of alphaRD1-4-GST and betaRD1-3-GST is responsible for the high antagonistic potency of the fusion proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi9919192DOI Listing

Publication Analysis

Top Keywords

ig-like domains
16
growth factor
12
alphard1-4-gst betard1-3-gst
12
platelet-derived growth
8
antagonistic potency
8
alpha- beta-receptors
8
gst-fusion proteins
8
compared cleaved
8
alphard1-4 betard1-3
8
pdgf binding
8

Similar Publications

The field of antibody therapeutics is rapidly growing, with over 210 antibodies currently approved or in regulatory review and ~ 1,250 antibodies in clinical development. Antibodies are highly versatile molecules that, with strategic design of their antigen-binding domain (Fab) and the domain responsible for mediating effector functions (Fc), can be used in a wide range of therapeutic indications. Building on many years of progress, the biopharmaceutical industry is now advancing innovative research and development by exploring new targets and new formats and using antibody engineering to fine-tune functions tailored to specific disease requirements.

View Article and Find Full Text PDF

Emerging roles of checkpoint molecules on B cells.

Immunol Med

January 2025

Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.

Immune checkpoint molecules, including both co-inhibitory molecules and co-stimulatory molecules, are known to play critical roles in regulating T-cell responses. During the last decades, immunotherapies targeting these molecules (such as programmed cell death 1 (PD-1), and lymphocyte activation gene 3 (LAG-3)) have provided clinical benefits in many cancers. It is becoming apparent that not only T cells, but also B cells have a capacity to express some checkpoint molecules.

View Article and Find Full Text PDF

Obscurin is a giant protein that coordinates diverse aspects of striated muscle physiology. Obscurin immunoglobulin domains 58/59 (Ig58/59) associate with essential sarcomeric and Ca2+ cycling proteins. To explore the pathophysiological significance of Ig58/59, we generated the Obscn-ΔIg58/59 mouse model, expressing obscurin constitutively lacking Ig58/59.

View Article and Find Full Text PDF

Antibody-based pharmaceuticals are the leading biologic drug platform (> $75B/year). Despite a wealth of information collected on them, there is still a lack of knowledge on their inter-domain structural distributions, which impedes innovation and development. To address this measurement gap, we have developed a new methodology to derive biomolecular structure ensembles from distance distribution measurements via a library of tagged proteins bound to an unlabeled and otherwise unmodified target biologic.

View Article and Find Full Text PDF

The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications.

Cancers (Basel)

December 2024

Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.

The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!