We have previously shown that activation of kappa opioid receptors within the rostral ventral medulla in lightly anesthetized rats has an anti-mu opioid analgesic action in male rats. Microinjections of the kappa opioid receptor agonist, U69593, attenuated the increase in tail-flick latency produced by activation of mu opioid receptors located within the ventrolateral periaqueductal gray. There are sex differences in the pain modulating potency of opioid analgesics, including kappa opioid agonists. In the present study, we examined whether activation of kappa opioid receptors within the rostral ventral medulla in lightly anesthetized female rats produces an anti-mu opioid analgesic effect similar to that found in males. We found that in the RVM the same dose of kappa opioid receptor agonist that reduces mu receptor-mediated increase in tail-flick latency in male rats produces a moderate increase in tail-flick latency in female rats. Additionally, we discovered that female rats are significantly more sensitive to the mu opioid agonist, DAMGO, injected into the ventrolateral periaqueductal gray. The results indicate that these two brain structures, which mediate the analgesic effects of opioids, are sexually dimorphic with regard to opioid receptor function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3959(99)00257-2 | DOI Listing |
The endogenous dynorphin/kappa opioid receptor (KOR) system in the brain mediates the dysphoric effects of stress, and KOR antagonists may have therapeutic potential for the treatment of drug addiction, depression, and psychosis. One class of KOR antagonists, the long-acting norBNI-like antagonists, have been suggested to act by causing KOR inactivation through a cJun-kinase mechanism rather than by competitive inhibition. In this study, we screened for other opioid ligands that might produce norBNI-like KOR inactivation and found that nalfurafine (a G-biased KOR agonist) and nalmefene (a KOR partial agonist) also produce long-lasting KOR inactivation.
View Article and Find Full Text PDFNeuroscience
January 2025
Johns Hopkins University School of Medicine, Department of Neurology, and the Kennedy Krieger Institute, Baltimore, MD, United States.
Deer mice provide a valuable naturally occurring animal model for investigating pathophysiological mechanisms underlying repetitive behaviors. Prior investigations using this model have identified abnormalities in the cortico-basal ganglia circuitry, including alterations within the indirect pathway and levels of endogenous opioids in the frontal cortex. In this study, the behaviors of n = 7 mice were quantified, and their brains were sectioned.
View Article and Find Full Text PDFBr J Anaesth
December 2024
Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China. Electronic address:
Background: Recent studies have implicated a role for perioperative medications in determining patient outcomes after surgery for malignant tumours, including relapse and metastasis.
Methods: A combined approach spanned molecular, cellular, and organismal levels, including bioinformatics, immunohistochemical staining of clinical and animal samples, RNA sequencing of glioblastoma multiforme (GBM) cells with Ingenuity Pathway Analysis, lentiviral-mediated gene expression modulation, in vitro cell experiments, and in vivo orthotopic tumour transplantation.
Results: We observed a significant correlation between increased kappa opioid receptor (KOP receptor) expression and better prognosis in patients with glioma.
Front Mol Biosci
December 2024
Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.
Hemorphins are short atypical opioid peptide fragments embedded in the β-chain of hemoglobin. They have received considerable attention recently due to their interaction with opioid receptors. The affinity of hemorphins to opioid receptors μ-opioid receptor (MOR), δ-opioid receptor (DOR), and κ-opioid receptor (KOR) has been well established.
View Article and Find Full Text PDFChem Biol Drug Des
December 2024
Department of Drug and Health Sciences, University of Catania, Catania, Italy.
Suitable structural modifications of the functional groups at N-substituent of (-)-cis-N-normetazocine nucleus modulate the affinity and activity profile of related ligands toward opioid receptors. Our research group has developed several compounds and the most interesting ligands, LP1 and LP2, exhibited a dual-target profile for mu-opioid receptor (MOR) and delta-opioid receptor (DOR). Recent structure-affinity relationship studies led to the discovery of novel LP2 analogs (compounds 1 and 2), which demonstrated high MOR affinity in the nanomolar range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!