Several lines of evidence indicate that the antinociception produced by intrathecal administration of the alpha(2)-adrenoceptor agonists dexmedetomidine or ST-91 is mediated by different subtypes of the alpha(2)-adrenoceptor. We recently provided additional pharmacologic evidence for this idea, as well as for differences in the function of these receptors between Harlan and Sasco rats, two widely-used outbred substrains of Sprague-Dawley rat. The present study used isobolographic analysis to further characterize the receptors at which intrathecally administered ST-91 and dexmedetomidine act in these two substrains. The rationale for these studies derives from the assumption that if dexmedetomidine and ST-91 act as agonists at the same receptor then they should interact in an additive manner. However, if they interact in a supra-additive manner, then they must act at different subtypes of the alpha(2)-adrenoceptor. In the tail-flick test, the dose-effect relationship for a 1:3 mixture of dexmedetomidine and ST-91 was shifted significantly to the left of the theoretical dose-additive line in both Harlan and Sasco Sprague-Dawley rats. A similar finding was made in the hot-plate test despite the fact that the dose-response characteristics of the agonists were different in this test. Thus, in Harlan rats, in which ST-91 is a full agonist and dexmedetomidine is essentially inactive, the dose-effect relationship for the mixture of dexmedetomidine and ST-91 was shifted far to the left of the dose-additive line. Similarly, in Sasco rats, in which ST-91 is a partial agonist and dexmedetomidine is inactive, co-administration of the two agonists also shifted the dose-response relationship to the left of the dose-additive line. The consistent finding that these two alpha(2)-adrenoceptor agonists interact in a supra-additive manner provides strong evidence that dexmedetomidine and ST-91 produce antinociception by acting at different alpha(2)-adrenoceptor subtypes in the spinal cord. This conclusion is consistent with the earlier proposal that dexmedetomidine acts predominantly at alpha(2A)-adrenoceptors whereas ST-91 acts predominantly at non-alpha(2A)-adrenoceptors. Recent anatomical evidence indicates that these non-alpha(2A) adrenoceptors may be of the alpha(2C) type. The synergistic combination of an alpha(2A)- and an alpha(2C)-adrenoceptor agonist may provide a unique and highly effective drug combination for the treatment of pain without the sedation produced by an equianalgesic dose of a single alpha(2)-adrenoceptor agonist.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3959(99)00261-4 | DOI Listing |
Br J Pharmacol
December 2008
Department of Anesthesiology, University of California-San Diego, La Jolla, CA 91766-1854, USA.
Background And Purpose: Intrathecal administration of alpha(2)-adrenoceptor agonists produces potent analgesia. This study addressed the subtype of spinal alpha(2)-adrenoceptor responsible for the analgesic effects of i.t.
View Article and Find Full Text PDFVet Anaesth Analg
March 2006
Equine Clinic, Section of Veterinary Anaesthesia, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
Objective: To review the use and adverse effects of alpha(2)-agonists in sheep.
Study Design: Literature review.
Material And Methods: 'Pubmed' of the United States National Library of Medicine and 'Veterinary Science' of CAB International were searched for references relating sheep to alpha(2)-agonists.
Pain
March 2000
Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue M/C4028, Chicago, USA.
Several lines of evidence indicate that the antinociception produced by intrathecal administration of the alpha(2)-adrenoceptor agonists dexmedetomidine or ST-91 is mediated by different subtypes of the alpha(2)-adrenoceptor. We recently provided additional pharmacologic evidence for this idea, as well as for differences in the function of these receptors between Harlan and Sasco rats, two widely-used outbred substrains of Sprague-Dawley rat. The present study used isobolographic analysis to further characterize the receptors at which intrathecally administered ST-91 and dexmedetomidine act in these two substrains.
View Article and Find Full Text PDFBiochem Pharmacol
April 1998
Center for Biological Research, Neurobiology Unit, Roche Bioscience, Palo Alto, CA 94304, USA.
Alpha-2 adrenergic receptors (alpha2 AR) mediate incorporation of guanosine 5'-O-(gamma-thio)triphosphate ([35S]GTPgammaS) into isolated membranes via receptor-catalyzed exchange of [35S]GTPgammaS for GDP. In the current study, we used [35S]GTPgammaS incorporation to characterize the intrinsic activity and potency of agonists and antagonists at the cloned mouse alpha2a/d and human alpha2a, alpha2b, and alpha2c ARs. Full agonists increased [35S]GTPgammaS binding to membranes by 2- to 3-fold.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
November 1997
Department of Anesthesia and Critical Care, University of Illinois at Chicago, Chicago, Illinois 60637, USA.
In this study, we examined whether Sprague-Dawley rats obtained from two different vendors, Harlan and Sasco, differ with respect to the types of alpha-2 adrenoceptors in the spinal cord that mediate antinociception. This hypothesis was tested using two alpha-2 adrenoceptor agonists, dexmedetomidine and ST-91, which are relatively selective for alpha-2A and alpha-2B adrenoceptors, respectively, and two different measures of nociception, the tail-flick and the 55 degrees C hot-plate test. Dexmedetomidine and ST-91 each increased tail-flick latency to a similar extent in both Harlan and Sasco rats, although dexmedetomidine was more efficacious than ST-91 in each substrain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!