Structural determinants required for apical sorting of an intestinal brush-border membrane protein.

J Biol Chem

Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.

Published: March 2000

The distinct protein and lipid constituents of the apical and basolateral membranes in polarized cells are sorted by specific signals. O-Glycosylation of a highly polarized intestinal brush-border protein sucrase isomaltase is implicated in its apical sorting through interaction with sphingolipid-cholesterol microdomains. We characterized the structural determinants required for this mechanism by focusing on two major domains in pro-SI, the membrane anchor and the Ser/Thr-rich stalk domain. Deletion mutants lacking either domain, pro-SI(DeltaST) (stalk-free) and pro-SI(DeltaMA) (membrane anchor-free), were constructed and expressed in polarized Madin-Darby canine kidney cells. In the absence of the membrane anchoring domain, pro-SI(DeltaMA) does not associate with lipid rafts and the mutant is randomly delivered to both membranes. Therefore, the O-glycosylated stalk region is not sufficient per se for the high fidelity of apical sorting of pro-SI. Pro-SI(DeltaST) does not associate either with lipid rafts and its targeting behavior is similar to that of pro-SI(DeltaMA). Only wild type pro-SI containing both determinants, the stalk region and membrane anchor, associates with lipid microdomains and is targeted correctly to the apical membrane. However, not all sequences in the stalk region are required for apical sorting. Only O-glycosylation of a stretch of 12 amino acids (Ala(37)-Pro(48)) juxtapose the membrane anchor is required in conjunction with the membrane anchoring domain for correct targeting of pro-SI to the apical membrane. Other O-glycosylated domains within the stalk (Ala(49)-Pro(57)) are not sufficient for apical sorting. We conclude that the recognition signal for apical sorting of pro-SI comprises O-glycosylation of the Ala(37)-Pro(48) stretch and requires the presence of the membrane anchoring domain.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.275.9.6566DOI Listing

Publication Analysis

Top Keywords

apical sorting
24
membrane anchor
12
membrane anchoring
12
anchoring domain
12
stalk region
12
membrane
10
apical
9
structural determinants
8
determinants required
8
required apical
8

Similar Publications

A dense glycocalyx, composed of the megaDalton-sized membrane mucin MUC17, coats the microvilli in the apical brush border of transporting intestinal epithelial cells, called enterocytes. The formation of the MUC17-based glycocalyx in the mouse small intestine occurs at the critical suckling-weaning transition. The glycocalyx extends 1 µm into the intestinal lumen and prevents the gut bacteria from directly attaching to the enterocytes.

View Article and Find Full Text PDF

Ehbp1 orchestrates orderly sorting of Wnt/Wingless to the basolateral and apical cell membranes.

EMBO Rep

November 2024

Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.

Wingless (Wg)/Wnt signaling plays a critical role in both development and adult tissue homeostasis. In the Drosophila larval wing disc epithelium, the orderly delivery of Wg/Wnt to the apical and basal cell surfaces is essential for wing development. Here, we identified Ehbp1 as the switch that dictates the direction of Wg/Wnt polarized intracellular transport: the Adaptor Protein complex 1 (AP-1) delivers Wg/Wnt to the basolateral cell surface, and its sequestration by Ehbp1 redirects Wg/Wnt for apical delivery.

View Article and Find Full Text PDF

A size filter at the Golgi regulates apical membrane protein sorting.

Nat Cell Biol

October 2024

Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.

Despite decades of research, apical sorting of epithelial membrane proteins remains incompletely understood. We noted that apical cytoplasmic domains are smaller than those of basolateral proteins; however, the reason for this discrepancy is unknown. Here we used a synthetic biology approach to investigate whether a size barrier at the Golgi apparatus might hinder apical sorting of proteins with large cytoplasmic tails.

View Article and Find Full Text PDF

Polarly localized Bro1 domain proteins regulate PIN-FORMED abundance and root gravitropic growth in Arabidopsis.

Commun Biol

September 2024

MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

The developmental plasticity of the root system plays an essential role in the adaptation of plants to the environment. Among many other signals, auxin and its directional, intercellular transport are critical in regulating root growth and development. In particular, the PIN-FORMED2 (PIN2) auxin exporter acts as a key regulator of root gravitropic growth.

View Article and Find Full Text PDF

The membrane-integrated NADPH oxidases DUOX1 and DUOX2 are recruited to the apical plasma membrane in epithelial cells to release hydrogen peroxide, thereby playing crucial roles in various functions such as thyroid hormone synthesis and host defense. However, it has remained unknown about the molecular mechanism for apical sorting of DUOX1 and DUOX2. Here we show that DUOX1 and DUOX2 are correctly sorted to the apical membrane via the membrane-spanning DUOX maturation proteins DUOXA1 and DUOXA2, respectively, when co-expressed in MDCK epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!