The Elongin complex stimulates the rate of transcription elongation by RNA polymerase II by suppressing the transient pausing of the polymerase at many sites along the DNA template. Elongin is composed of a transcriptionally active A subunit and two small regulatory B and C subunits, the latter of which bind stably to each other to form a binary complex that interacts with Elongin A and strongly induces its transcriptional activity. To further understand the roles of Elongin in transcriptional regulation, we attempted to identify Elongin-related proteins. Here, we report on the cloning, expression, and characterization of human Elongin A2, a novel transcription elongation factor that exhibited 47% identity and 61% similarity to Elongin A. Biochemical studies have shown that Elongin A2 stimulates the rate of transcription elongation by RNA polymerase II and is capable of forming a stable complex with Elongin BC. However, in contrast to Elongin A, its transcriptional activity is not activated by Elongin BC. Northern blot analysis revealed that Elongin A2 mRNA was specifically expressed in the testis, suggesting that Elongin A2 may regulate the transcription of testis-specific genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.275.9.6546 | DOI Listing |
Sci Rep
January 2025
Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration (FDA), Jefferson, AR, U.S.A.
Infections associated with urinary catheters are often caused by biofilms composed of various bacterial species that form on the catheters' surfaces. In this study, we investigated the intricate interplay between Escherichia coli and Enterococcus faecalis during biofilm formation on urinary catheter segments using a dual-species culture model. We analyzed biofilm formation and global proteomic profiles to understand how these bacteria interact and adapt within a shared environment.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs associated with PIWI proteins within the male germline, and they play significant roles in maintaining genome stability via the modulation of gene expression. The piRNAs are implicated in the progression of various cancers, but the simultaneous monitoring of multiple piRNAs remains a challenge. Herein, we construct a single-molecule biosensor based on polymerization-transcription-mediated target regeneration for the simultaneous one-pot detection of multiple piRNAs.
View Article and Find Full Text PDFPlant Commun
January 2025
College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
High-temperature stress, also referred to as heat stress, often has detrimental effects on plant growth and development. Phytochromes have been implicated in regulating plant heat stress responses, but the role of blue-light receptors, such as cryptochromes, in plant blue light-dependent heat stress response has remained unclear. We found that the blue light receptor cryptochrome 1 (CRY1) negatively regulates heat stress tolerance (thermotolerance) in Arabidopsis.
View Article and Find Full Text PDFPlant Cell
December 2024
Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA.
In Arabidopsis (Arabidopsis thaliana), light and circadian clock signaling converge on PHYTOCHROME-INTERACTING FACTORS (PIFs) 4 and 5 to produce a daily rhythm of hypocotyl elongation. PIF4 and PIF5 expression is repressed at dusk by the evening complex (EC), consisting of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX). Here, we report that ELF3 recruits the JUMONJI (JMJ) H3K4me3 demethylases JMJ17 and JMJ18 to the PIF4 and PIF5 loci in the evening to remove their H3K4me3 marks.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.
5-Lipoxygenase (5-LO), encoded by the gene , is implicated in several pathologies. As key enzyme in leukotriene biosynthesis, 5-LO plays a central role in inflammatory diseases, but the 5-LO pathway has also been linked to development of certain hematological and solid tumor malignancies. Of note, previous studies have shown that the leukemogenic fusion protein MLL-AF4 strongly increases gene promoter activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!