Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1748289PMC
http://dx.doi.org/10.1136/tc.9.1.1DOI Listing

Publication Analysis

Top Keywords

hard road
4
road finding
4
finding ways
4
ways reduce
4
reduce teen
4
teen tobacco
4
hard
1
finding
1
ways
1
reduce
1

Similar Publications

Study on the Abrasive Blasting Mechanism of Solder Welded 304V Wire in Vascular Intervention.

Micromachines (Basel)

November 2024

Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China.

The solder burrs on the 304V wire surface can easily scratch the vascular tissue during interventional treatment, resulting in complications such as medial tears, bleeding, dissection, and rupture. Abrasive blasting is often used to remove solder burr and obtain a smooth surface for the interventional device. This study conducted an abrasive blasting experiment to explore the effects of process parameters (air pressure, lift-off height, abrasive volume, and abrasive type) on processing time, surface roughness, and mechanical properties to reveal the material removal mechanism.

View Article and Find Full Text PDF

Boosting Carrier Mobility in 2D Layered Perovskites for High-Performance UV Photodetector.

Small Methods

January 2025

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, P. R. China.

2D hybrid perovskites have attracted great interest due to their promising potential in photodetectors. The phase structure, dielectric, and excitonic properties in 2D perovskites play a pivotal role in the performance of the corresponding optoelectronic device. Here a lattice anchoring method is demonstrated to boost carrier mobility in 2D perovskites by tailoring large organic spacer cation layers.

View Article and Find Full Text PDF

Effect of post-processing on the surface, optical, mechanical, and dimensional properties of 3D-printed orthodontic clear retainers.

Clin Oral Investig

January 2025

School of Materials Science and Innovation, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom, 73170, Thailand.

Objectives: To address the high surface roughness and poor optical properties of three-dimensional (3D) printed orthodontic clear retainers, an alternative post-processing protocol was investigated with the goal of achieving improved surface, optical, and mechanical properties while preserving dimensional accuracy.

Materials And Methods: Samples were prepared from two biocompatible methacrylate-based 3D-printing resins (Formlabs Dental LT Clear V2, NextDent OrthoFlex) and one thermoplastic material (Duran). For the 3D-printed resins, one group was post-processed by rinsing in isopropyl alcohol, while another group was centrifuged before post-curing in glycerine.

View Article and Find Full Text PDF

While ultrasonography effectively diagnoses Hashimoto's thyroiditis (HT), exploring its transcriptomic landscape could reveal valuable insights into disease mechanisms. This study aimed to identify HT-associated RNA signatures and investigate their potential for enhanced molecular characterization. Samples comprising 31 HT patients and 30 healthy controls underwent RNA sequencing of peripheral blood.

View Article and Find Full Text PDF
Article Synopsis
  • This paper discusses the creation and organization of polyurethane elastomers using special bis-aromatic urea hydrogen bonding motifs to enhance self-assembly.
  • It details the use of polytetramethylene ether glycol (PTMG) and other diols to form supramolecular polyurethanes with specific molecular weights and distribution.
  • The resulting materials display adjustable mechanical properties and healing capabilities, making them suitable for practical applications like cable coatings.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!