The peptide synthesis from N-acetyl-L-phenylalanine ethyl ester with alaninamide catalyzed by a surfactant-protease complex has been performed in anhydrous hydrophilic organic solvents. Proteases derived from various sources were converted to surfactant-coated complexes with a nonionic surfactant. The surfactant-subtilisin Carlsberg (STC) complex had a higher enzymatic activity than the other protease complexes and the initial reaction rate in tert-amyl alcohol was 26-fold that of STC lyophilized from an optimum aqueous buffer solution. Native STC hardly catalyzed the same reaction. The addition of water to the reaction medium activated the lyophilized STC, however, the reaction rate was much lower than that of the STC complex, and a hydrolysis reaction preferentially proceeded. The STC complex exhibited a high catalytic activity in hydrophilic organic solvents (e.g. tertiary alcohol). The addition of dimethylformamide as a cosolvent improved the solubility of amino acid amides and further activated the STC complex due to the water mimicking effect. When hydrophilic amino acid amides were employed as an acyl acceptor, the peptide formation proceeded efficiently compared to that using hydrophobic substrates. The surfactant-STC complex is a powerful biocatalyst for peptide synthesis because the STC complexes display a high catalytic activity in anhydrous hydrophilic organic solvents and did not require the excess amount of water. Thus the side (hydrolysis) reaction is effectively suppressed and the yield in the dipeptide formation is considerably high.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0141-0229(99)00152-0 | DOI Listing |
Water Sci Technol
January 2025
China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.
Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Graduate School of Science and Technology, Kumamoto University.
Near-infrared wavelength-selective soft actuators have attracted much attention for applications in microsystems in bioliving. It is desirable for the photothermal conversion materials in the actuators to be downsized to the molecular scale. However, in conventional actuator materials using copolymer gels composed of thermosensitive and photothermal conversion molecule-coordinated monomers, the strong cross-linking of molecules in the networks impairs the actuator deformation.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands. Electronic address:
Background: Persistent and mobile organic compounds (PMOC) are of great concern for water quality and human health. The recent improvement and availability of high-resolution mass spectrometry in combination with liquid chromatography have widely expanded the potential of analytical workflows for their detection and quantitation in water. Given their high polarity, the detection of some PMOC requires alternative techniques to reversed-phase chromatography, such as hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC).
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China. Electronic address:
Nanomedicines need to overcome multiple biological barriers in the body to reach the target area. However, traditional nanomedicines with constant physicochemical properties are not sufficient to meet the diverse and sometimes conflicting requirements during in vivo transport, making it difficult to penetrate various biological barriers, resulting in suboptimal drug delivery efficiency. Smart self-transforming nano-systems (SSTNs), capable of altering their own physicochemical properties (including size, charge, hydrophobicity, stiffness, morphology, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!