Background And Objective: The thermal response of port wine stain (PWS) skin to a combined treatment of pulsed laser irradiation and cryogen spray cooling (CSC) was analyzed through a series of simulations performed with a novel optical-thermal model that incorporates realistic tissue morphology.

Study Design/materials And Methods: The model consisted of (1) a three-dimensional reconstruction of a PWS biopsy, (2) a Monte Carlo optical model, (3) a finite difference heat transfer model, and (4) an Arrhenius thermal damage calculation. Simulations were performed for laser pulses of 0.5, 2, and 10 ms and a wavelength of 585 nm. Simulated cryogen precooling spurts had durations of 0, 20, or 60 ms and terminated at laser onset. Continuous spray cooling, which commenced 60 ms before laser onset and continued through the heating and relaxation phases, was also investigated.

Results: The predicted response to CSC included maximal pre-irradiation temperature reductions of 27 degrees C at the superficial surface and 12 degrees C at the dermoepidermal junction. For shorter laser pulses (0.5, 2 ms), precooling significantly reduced temperatures in superficial regions, yet did not effect superficial vessel coagulation. Continuous cooling was required to reduce significantly thermal effects for the 10-ms laser pulse.

Conclusions: For the PWS morphology and treatment parameters studied, optimal damage distributions were obtained for a 2-ms laser pulse with a 60-ms precooling spurt. Epidermal and vascular morphology as well as laser pulse duration should be taken into account when planning CSC/laser treatment of PWS. Our novel, realistic-morphology modeling technique has significant potential as a tool for optimizing PWS treatment parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1096-9101(2000)26:2<145::aid-lsm5>3.0.co;2-0DOI Listing

Publication Analysis

Top Keywords

spray cooling
12
laser
9
cryogen spray
8
port wine
8
simulations performed
8
laser pulses
8
laser onset
8
treatment parameters
8
laser pulse
8
treatment
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!