The space-time patterns of activity generated across arrays of retinal neurons can provide a sensitive measurement of the effects of neural interactions underlying retinal activity. We measured the excitatory and inhibitory components associated with these patterns at each cellular level in the retina and further dissected inhibitory components pharmacologically. Using perforated and loose patch recording, we measured the voltages, currents, or spiking at 91 lateral positions covering approximately 2 mm in response to a flashed 300-microm-wide bar. First, we showed how the effect of well known lateral inhibition at the outer retina, mediated by horizontal cells, evolved in time to compress the spatial representation of the stimulus bar at ON and OFF bipolar cell bodies as well as horizontal cells. Second, we showed, for the first time, how GABA(C) receptor mediated amacrine cell feedback to bipolar terminals compresses the spatial representation of the stimulus bar at ON bipolar terminals over time. Third, we showed that a third spatiotemporal compression exists at the ganglion cell layer that is mediated by feedforward amacrine cells via GABA(A) receptors. These three inhibitory mechanisms, via three different receptor types, appear to compensate for the effects of lateral diffusion of activity attributable to dendritic spread and electrical coupling between retinal neurons. As a consequence, the width of the final representation at the ganglion cell level approximates the dimensions of the original stimulus bar.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772932 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.20-05-01941.2000 | DOI Listing |
J Clin Med
January 2025
Department of Psychology, Università degli Studi della Campania "L. Vanvitelli", 81100 Caserta, Italy.
Mental representation of spatial information relies on egocentric (body-based) and allocentric (environment-based) frames of reference. Research showed that spatial memory deteriorates as Alzheimer's disease (AD) progresses and that allocentric spatial memory is among the earliest impaired areas. Most studies have been conducted in static situations despite the dynamic nature of real-world spatial processing.
View Article and Find Full Text PDFBrain Sci
November 2024
School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
Binocular vision may serve as a good model for research on awareness. Binocular summation (BS) can be defined as the superiority of binocular over monocular visual performance. Early studies of BS found an improvement of a factor of about 1.
View Article and Find Full Text PDFJ Vis
January 2025
Department of Psychology, University of Washington, Seattle, WA, USA.
The population receptive field (pRF) method, which measures the region in visual space that elicits a blood-oxygen-level-dependent (BOLD) signal in a voxel in retinotopic cortex, is a powerful tool for investigating the functional organization of human visual cortex with fMRI (Dumoulin & Wandell, 2008). However, recent work has shown that pRF estimates for early retinotopic visual areas can be biased and unreliable, especially for voxels representing the fovea. Here, we show that a log-bar stimulus that is logarithmically warped along the eccentricity dimension produces more reliable estimates of pRF size and location than the traditional moving bar stimulus.
View Article and Find Full Text PDFEur J Ophthalmol
January 2025
University of Lille, Inserm, CHU Lille, UMR-S 1172 - Lille Neurosciences and Cognition, CNRS, 59000 Lille, France.
Background/objectives: Glaucoma can impact the ability to perform daily life activities such as driving. In such tasks, reaction time is critical to detect hazards. Understanding the modalities that affect response times is thus essential for clinical care.
View Article and Find Full Text PDFFront Psychol
November 2024
School of Psychology, Chukyo University, Nagoya, Japan.
Introduction: The binocular system provides a stereoscopic view from slightly different retinal images and produces perceptual alternations, namely, binocular rivalry, from significantly different retinal images. When we observe a stereogram in which the stimulus configurations induce stereopsis and rivalry simultaneously, the binocular system prefers stereopsis to rivalry. However, changes in visual perception are yet to be investigated by parametrically manipulating the components of a stereogram.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!