Retinal Müller (glial) cells metabolize glucose to lactate, which is preferentially taken up by photoreceptor neurons as fuel for their oxidative metabolism. We explored whether lactate supply to neurons is a glial function controlled by neuronal signals. For this, we used subcellular fluorescence imaging and either amperometric or optical biosensors to monitor metabolic responses simultaneously from mitochondrial and cytosolic compartments of individual Müller cells from salamander retina. Our results demonstrate that lactate production and release is controlled by the combined action of glutamate and NH(4)(+), both at micromolar concentrations. Transport of glutamate by a high-affinity carrier can produce in Müller cells a rapid rise of glutamate concentration. In our isolated Müller cells, glutamine synthetase (GS) converted transported glutamate to glutamine that was released. This reaction, predominant when enough NH(4)(+) is available, was limited at micromolar concentrations of NH(4)(+), and more glutamate entered then as substrate into the mitochondrial tricarboxylic acid cycle (TCA). Increased production of glutamine by GS leads to increased utilization of ATP, some of which is generated glycolytically. Methionine sulfoximine, a specific inhibitor of GS, suppressed the stimulatory effect of glutamate and NH(4)(+) on glycolysis and induced massive entry of glutamate into the TCA cycle. The rate of glutamine production also determined the amount of pyruvate transaminated by glutamate to alanine. Lactate, alanine, and glutamine can be taken up and metabolized by photoreceptor neurons. We conclude that a major function of Müller glial cells is to nourish retinal neurons and to metabolize the neurotoxic ammonia and glutamate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772920 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.20-05-01809.2000 | DOI Listing |
Arch Med Res
July 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain.
Chronic inflammatory liver disease with an acute deterioration of liver function is named acute-on-chronic inflammation and could be regulated by the metabolic impairments related to the liver dysfunction. In this way, the experimental cholestasis model is excellent for studying metabolism in both types of inflammatory responses. Along the evolution of this model, the rats develop biliary fibrosis and an acute-on-chronic decompensation.
View Article and Find Full Text PDFCells
June 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
Portal hypertension is a common complication of liver disease, either acute or chronic. Consequently, in chronic liver disease, such as the hypertensive mesenteric venous pathology, the coexisting inflammatory response is classically characterized by the splanchnic blood circulation. However, a vascular lymphatic pathology is produced simultaneously with the splanchnic arterio-venous impairments.
View Article and Find Full Text PDFClin Res Hepatol Gastroenterol
October 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain. Electronic address:
Introduction: Splanchnic mast cells increase in chronic liver and in acute-on-chronic liver diseases. We administered Ketotifen, a mast cell stabilizer, and measured the mast cells in the splanchnic organs of cholestatic rats.
Material And Methods: These groups were studied: sham-operated rats (S; n = 15), untreated microsurgical cholestasic rats (C; n = 20) and rats treated with Ketotifen: early (SK-e; n = 20 and CKe; n = 18), and late (SK-l; n = 15 and CK-l; n = 14).
Inflamm Res
February 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.
Background: In mammals, inflammation is required for wound repair and tumorigenesis. However, the events that lead to inflammation, particularly in non-healing wounds and cancer, are only partly understood.
Findings: Mast cells, due to their great plasticity, could orchestrate the inflammatory responses inducing the expression of extraembryonic programs of normal and pathological tissue formation.
Inflamm Res
February 2018
Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.
The inflammatory response expressed after wound healing would be the recapitulation of systemic extra-embryonic functions, which would focus on the interstitium of the injured tissue. In the injured tissue, mast cells, provided for a great functional heterogeneity, could play the leading role in the re-expression of extra-embryonic functions, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!