Pretreatment of intact platelets with cytochalasin D prevented actin polymerization and cytoskeleton reorganization induced by thrombin, but did not affect platelet aggregation. Under these conditions, synthesis of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) stimulated by thrombin was strongly inhibited, while production of phosphatidic acid was unaffected. The inhibitory effect of cytochalasin D was not observed when platelet aggregation was prevented by the RGDS peptide. We also found that cytochalasin D did not affect PtdIns(3,4)P2 synthesis induced by concanavalin A (ConA), which is known to occur through an aggregation-independent mechanism. Moreover, thrombin, but not ConA, induced the translocation of phosphatidylinositol 3-kinase to the cytoskeleton. This process was equally inhibited by both the RGDS peptide and cytochalasin D. These results demonstrate that the cytoskeleton represents a functional link between thrombin-induced aggregation and synthesis of PtdIns(3,4)P2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(00)01100-5DOI Listing

Publication Analysis

Top Keywords

synthesis phosphatidylinositol
8
phosphatidylinositol 34-bisphosphate
8
induced thrombin
8
platelet aggregation
8
rgds peptide
8
peptide cytochalasin
8
platelet cytoskeleton
4
cytoskeleton regulates
4
regulates aggregation-dependent
4
synthesis
4

Similar Publications

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.

Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

Reduced trophoblast migration and invasion contribute to unexplained recurrent spontaneous abortion (URSA). Aquaporin 3 (AQP3) plays a crucial role in facilitating trophoblast migration and invasion during early pregnancy through fetal-maternal crosstalk. This study aimed to comprehensively investigate the mechanism involving AQP3 and its modulatory effects on human extravillous trophoblast (HTR-8/SVneo cells) migration and invasion.

View Article and Find Full Text PDF

Triiodothyronine (T3) increases the expression of the amphiregulin (AREG) oncogene by activating extranuclear pathways in MCF-7 breast cancer cells.

Arch Endocrinol Metab

January 2025

Universidade Estadual Paulista Faculdade de Medicina de Botucatu BotucatuSP Brasil Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Botucatu, SP, Brasil.

Objective: Considering that the αvβ3 integrin plays an important role in tumor metastasis, this study investigated the involvement of these pathways in mediating the triiodothyronine (T3) effects on amphiregulin () expression.

Materials And Methods: We treated MCF-7 cells with T3 (10 nM) for 1 hour in the presence or absence of inhibitors for αvβ3 integrin (RGD peptide), MAPK (PD98059), PI3K (LY294002), and protein synthesis (cycloheximide [CHX]). A control group (C) received no T3 or inhibitors.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a complex gynecological endocrinological condition that significantly impacts women's fertility during their reproductive lifespan. The causes of PCOS are multifaceted, and its pathogenesis is not yet clear. This study established a rat model of PCOS and, in conjunction with clinical samples and database data, analysed the role of claudin 11 (CLDN11) in follicular granulosa cells (GCs) in regulating the proliferation of GCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!