The effects of acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline, an endogenous substance suspected of producing parkinsonism in humans, on the muscle tone and metabolism of dopamine in the striatum, and on the number of tyrosine hydroxylase-immunoreactive cells in the substantia nigra were investigated in rats. Muscle tone was examined using a combined mechanomyographic and electromyographic method which measured simultaneously the muscle resistance of the rat's hind foot to passive extension and flexion in the ankle joint and electromyographic activity of the antagonistic muscles of that joint: gastrocnemius and tibialis anterior. 1,2,3,4-Tetrahydroisoquinoline administered at doses of 50 and 100 mg/kg intraperitoneally for 19 days increased muscle resistance 1 h after the first injection (acute treatment), 1 h after the last injection (chronic treatment) and three days after compound withdrawal. Rigidity observed on the third day of 1,2,3,4-tetrahydroisoquinoline withdrawal was accompanied by an increased tonic (resting) electromyographic activity of the gastrocnemius and tibialis anterior muscles. At the same time, a significant reduction in the number of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra and a decrease in the dopamine level in the striatum were also found. A declining number of tyrosine hydroxylase-immunoreactive neurons in the whole substantia nigra showed a significant negative correlation with the enhanced muscle resistance, as well as with the tonic electromyographic activity recorded at rest, i.e. before the start of movements, from the gastrocnemius and tibialis anterior muscles. Our results suggest that 1,2,3,4-tetrahydroisoquinoline may be one of the endogenous substances involved in the progress of Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(99)00511-4DOI Listing

Publication Analysis

Top Keywords

substantia nigra
16
muscle tone
12
number tyrosine
12
tyrosine hydroxylase-immunoreactive
12
muscle resistance
12
electromyographic activity
12
gastrocnemius tibialis
12
tibialis anterior
12
acute chronic
8
chronic administration
8

Similar Publications

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Background: Central synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), involve alpha-synuclein accumulation and dopaminergic cell loss in the substantia nigra (SN) and locus coeruleus (LC). Pure autonomic failure (PAF), a peripheral synucleinopathy, often precedes central synucleinopathies.

Objectives: To assess early brain involvement in PAF using neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and fluorodopa-positron emission tomography (FDOPA-PET), and to determine whether PAF patients with a high likelihood ratio (LR) for conversion to a central synucleinopathy exhibit reduced NM-MRI contrast in the LC and SN compared with controls and low-LR patients.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative disorder marked by dopaminergic neuron degeneration in the substantia nigra. Emerging evidence suggests vitamin D3 (VD) plays a therapeutic role in PD, but its precise molecular mechanisms remain unclear. This study employed network pharmacology and bioinformatics to identify VD's hub targets and related pathways.

View Article and Find Full Text PDF

Superior colliculus controls the activity of the substantia nigra pars compacta and ventral tegmental area in an asymmetrical manner.

J Neurosci

January 2025

Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa street, 30-387 Kraków, Poland.

Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play a crucial role in controlling animals' orienting and approach behaviors toward relevant environmental stimuli. The ventral midbrain receives sensory input from the superior colliculus (SC), a tectal region processing information from contralateral receptive fields of various modalities. Given the significant influence of dopamine release imbalance in the left and right striatum on animals' movement direction, our study aimed to investigate the lateralization of the connection between the lateral SC and the midbrain DA system in male rats.

View Article and Find Full Text PDF

The association of seizure control with neuropathology in dementia.

Brain

January 2025

Comprehensive Epilepsy Program, Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.

Seizures in people with dementia (PWD) are associated with faster cognitive decline and worse clinical outcomes. However, the relationship between ongoing seizure activity and postmortem neuropathology in PWD remains unexplored. We compared post-mortem findings in PWD with active, remote, and no seizures using multicentre data from 39 Alzheimer's Disease Centres from 2005 to 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!