This is an experimental study on the characterization of particulate (soot) emissions from burning polymers. Emissions of polystyrene (PS), polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), and polyvinyl chloride (PVC) plastics were studied. Combustion took place in a laboratory-scale, electrically heated, drop-tube furnace at temperatures of 1300 and 1500 K, in air. The nominal bulk (global) equivalence ratio, phi, was varied in the range of 0.5-1.5, and the gas residence time in the nearly isothermal radiation zone of the furnace was approximately 1 sec. The particulate emissions were size-classified at the exit of the furnace, using a multi-stage inertial particle impactor. Results showed that both the yields and the size distributions of the emitted soot were remarkably different for the five plastics burned. Soot yields increased with an increasing bulk equivalence ratio. Combustion of PS yielded the highest amounts of soot (most highly agglomerated), several times more than the rest of the polymers. More soot was emitted from PS at 1500 than at 1300 K. Substantial amounts of soot agglomerates were larger than 9 microns. At 1500 and 1300 K, 35 and 29% of the soot mass, respectively, was PM2 (2 microns or smaller). Emissions from PE and PP were remarkably similar to each other. These polymers produced very low emissions at phi < or = 0.5, but emissions increased drastically with phi, and most of the soot was very fine (70-97% of the mass was PM2, depending on phi). Emissions from the combustion of PMMA were comparatively low and were the least influenced by the bulk phi, and 79-95% of the emissions were PM2. Combustion of PVC yielded the lowest amounts of soot; moreover, only 13-34% of the mass was PM2. On a comparative basis, at 1500 K, the following ranges of particulate yields were PM2: 19-75 mg/g of PS, 8-36 mg/g of PE, 1.5-47 mg/g of PP, 11-20 mg/g of PMMA, and 2-8 mg/g of PVC, depending on phi. These comparative results demonstrate that PS produces the highest amounts of fine particulates, followed by PP, PE, and PMMA, and then PVC. Burning these materials with excess oxygen drastically reduces the particulate emissions of PE and PP, substantially reduces those of PS, and mildly reduces those of PMMA and PVC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10473289.2000.10463994 | DOI Listing |
Sci Rep
January 2025
Hydrobiology Lab, Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt.
Carbon black (CB) as rubber reinforcement has raised environmental concerns regarding this traditional petroleum-based filler, which is less susceptible to biodegradability. Although it has great reinforcing properties, the production technique is no longer sustainable, and its cost increases regularly. For these reasons, it is wise to look for sustainable replacement materials.
View Article and Find Full Text PDFSci Total Environ
January 2025
Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.
Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, Pennsylvania State University, University Park, PA 16802.
Aerosol-producing global catastrophes such as nuclear war, super-volcano eruption, or asteroid strike, although rare, pose a serious threat to human survival. Light-absorbing aerosols would sharply reduce temperature and solar radiation reaching the earth's surface, decreasing crop productivity including for locally adapted traditional crop varieties, i.e.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 161 Warren Street, Newark, New Jersey 07103, USA.
Soot aerosols emitted during combustion can affect climate by scattering and absorbing the sunlight. Individual soot particles are fractal aggregates composed of elemental carbon. In the atmosphere, these aggregates acquire coatings by condensation and coagulation, resulting in significant compaction of the aggregates that changes the direct climate forcing of soot.
View Article and Find Full Text PDFWaste Manag
January 2025
College of Materials Science & Engineering, Beijing University of Technology, No. 100, Pingleyuan Street, Chaoyang District, Beijing 100124, PR China. Electronic address:
Electroplating sludge smelting soot (ESSS), contains high-grade value metals (such as Zn, Sn, Pb, precious metals Au and Pt) and large amounts of harmful elements Br and S, which could potentially cause valuable resources wastage and environmental pollution, therefore requires responsible recycling. An efficient and eco-friendly process for the cascade recovery of Zn, Sn, Pb, and precious metals Au and Pt from ESSS was proposed, combining NaOH roasting and acid-free aluminum salts leaching. Optimal NaOH roasting conditions achieved high extraction efficiencies for Zn, Sn, and Pb, which were then separated via water leaching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!