Factors influencing the variability of SO2 concentrations in Istanbul.

J Air Waste Manag Assoc

Department of Meteorology, Istanbul Technical University, Maslak, Turkey.

Published: January 2000

The correlation between sulfur dioxide (SO2) concentrations measured at the European and Asian sides of Istanbul and meteorological parameters is investigated using principal component analysis (PCA) and multiple regression analysis techniques. Several meteorological parameters are selected to represent the atmospheric conditions during two winter periods: 1993-1994 and 1994-1995. Six principal components are found to explain the majority of the observed meteorological variability. Surface pressure, 850-mb temperature, and surface zonal (east-west) and meridional (north-south) winds show high loadings on separate factors identified by PCA. We seek dominant meteorological parameters that control the SO2 levels at each monitoring station. Several multiple regression analysis models are fitted to the data from each monitoring station using six principal components and previous-day SO2 concentrations as independent variables. Results suggest that the most important parameters, highly correlated with SO2 concentrations in the Istanbul metropolitan area, are atmospheric pressure and surface zonal and meridional winds. These components have more influence on the determination of the air pollution levels at the Asian side than at the European side.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2000.10463981DOI Listing

Publication Analysis

Top Keywords

so2 concentrations
16
meteorological parameters
12
concentrations istanbul
8
multiple regression
8
regression analysis
8
principal components
8
surface zonal
8
monitoring station
8
so2
5
factors influencing
4

Similar Publications

The acceleration of urbanization has significantly exacerbated climate change due to excessive anthropogenic carbon emissions and air pollutants. Based on data from 281 prefecture-level cities in China between 2015 and 2021. The spatiotemporal co-evolution of urban carbon emissions and air pollutants was analyzed through map visualization and kernel density estimation, revealing non-equilibrium and heterogeneity.

View Article and Find Full Text PDF

Introduction: Recent studies suggest that ambient air pollution may contribute to osteoporosis; however, research focusing on populations with greater susceptibility is lacking. This study seeks to explore the association between air pollution and osteoporosis focusing on cancer survivors.

Materials And Methods: We analyzed data from 8977 individuals (2245 cancer survivors, 6732 cancer-free population) obtained from the Korea National Health and Nutrition Examination Survey (KNHANES) during 2007-2009 and 2015-2021.

View Article and Find Full Text PDF

The maritime transport sector poses significant air quality concerns, particularly in nearby cities. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential health impacts. This study measured particle number concentrations (PNC), size distributions (PNSD), and other pollutants including particulate matter (PM), nitrogen oxides (NO), black carbon (BC), sulfur dioxide (SO) and ozone (O), organic markers and trace elements at a major European harbor and an urban background (UB) location.

View Article and Find Full Text PDF

Sulfur species and gold transport in arc magmatic fluids.

Nat Geosci

December 2024

Department of Earth Sciences, University of Geneva, Geneva, Switzerland.

The sulfur species present in magmatic fluids affect the global redox cycle, the Earth's climate and the formation of some of the largest and most economic ore deposits of critical metals. However, the speciation of sulfur under conditions that are relevant for upper crustal magma reservoirs is unclear. Here we combine a prototype pressure vessel apparatus and Raman spectroscopy to determine sulfur speciation in arc magmatic fluid analogues in situ over a range of geologically relevant pressure-temperature-redox conditions.

View Article and Find Full Text PDF

Industrial, agricultural, and natural pollution pose a critical problem for the Prairie provinces of Canada, with significant environmental and health concerns. This study addresses a critical knowledge gap by assessing the cumulative impacts of pollutants in the Prairie region, which hosts 40 % of the Canada's indigenous population, often living near these pollution sources. By innovatively integrating Sentinel-5P satellite data, Google Earth Engine, ArcGIS, and Python, we show the trends in CO, NO₂, HCHO, SO₂, and aerosols from 2019 to 2023 at high resolution for the entire region, which sheds new light on the dynamics that operate beyond conventional air quality monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!