Survey of the proton affinities of adenine, cytosine, thymine and uracil dideoxyribonucleosides, deoxyribonucleosides and ribonucleosides.

J Mass Spectrom

Dipartimento di Chimica, Università della Calabria, Via P. Bucci, cubo 15/c, I-87030 Arcavacata di Rende (CS), Italy.

Published: February 2000

The kinetic method was applied to the determination of the proton affinities (PAs) of modified deoxy- and dideoxyribonucleosides. A correlation between the measured PAs and the replacement of one of the three hydroxyl groups of the ribose unit is presented. A PA scale was obtained which shows that the replacement of the primary or of one or both secondary hydroxyl groups of a ribonucleoside with a hydrogen atom induces the lowering or the enhancement of the nucleoside PA, respectively. The scale extends over a very narrow range of approximately 2 kcal mol(-1), thus demonstrating the sensitivity of the kinetic method in the evaluation of small differences in thermodynamic parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1096-9888(200002)35:2<139::AID-JMS921>3.0.CO;2-ADOI Listing

Publication Analysis

Top Keywords

proton affinities
8
kinetic method
8
hydroxyl groups
8
survey proton
4
affinities adenine
4
adenine cytosine
4
cytosine thymine
4
thymine uracil
4
uracil dideoxyribonucleosides
4
dideoxyribonucleosides deoxyribonucleosides
4

Similar Publications

Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating.

View Article and Find Full Text PDF

Measuring Attractive Interaction between a Self-Electrophoretic Micromotor and a Wall.

Phys Rev Lett

December 2024

School of Physics and Astronomy, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China.

Chemically driven micromotors exhibit a pronounced affinity for nearby surfaces, yet the quantification of this motor-wall interaction strength remains unexplored in experiments. Here, we apply an external force to a self-electrophoretic micromotor which slides along a wall and measures the force necessary to disengage the motor from the wall. Our experiments unveil that the required disengaging force increases with the strength of chemical driving, often surpassing both the motor's effective gravity and its propulsive thrust.

View Article and Find Full Text PDF

Background: Hallmark pathologies of Alzheimer's Disease (AD) include the accumulation of both extracellular amyloid and intracellular tau proteins. While a significant body of knowledge exists surrounding the role of the protein aggregates in the context of AD, research supporting these as targets for therapeutic development have yielded inconsistent findings. One significant barrier is the inability to restore cognitive function despite the successful clearance of these proteins.

View Article and Find Full Text PDF

Poor selectivity to tumor cells is a major drawback in the clinical application of the antitumor drug docetaxel (DTX). Peptide-drug conjugates (PDCs) constructed by modifying antitumor drugs with peptide ligands that have high affinity to certain overexpressed receptors in tumor cells are increasingly assessed for their possibility of tumor-selective drug delivery. In the present research, DTX is condensed with 3-(pyridin-2-yldisulfanyl) propanoic acid via ester bond to obtain the intermediate Py-SS-DTX.

View Article and Find Full Text PDF

3D-Porous Carbon Nitride Through Proton Regulation and Photocatalytic Synergy for Efficient Uranium Extraction From Seawater.

Small

December 2024

Key Laboratory of Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.

Extracting uranium from seawater is crucial for tapping oceanic resources vital to future energy supply. This study synthesized a novel nitrogen vacancy carbon nitride (NCN) grafted polyethyleneimine (PEI) composite material (NCNP). Experiments and molecular dynamics simulations reveal that NCNP effectively hinders the diffusion of uranyl ions (UO ) to the NCN surface, thereby inhibiting electron transfer reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!