Crystal structure of the anti-(carcinoembryonic antigen) single-chain Fv antibody MFE-23 and a model for antigen binding based on intermolecular contacts.

Biochem J

Department of Biochemistry and Molecular Biology, Royal Free Campus, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK.

Published: March 2000

MFE-23 is the first single-chain Fv antibody molecule to be used in patients and is used to target colorectal cancer through its high affinity for carcinoembryonic antigen (CEA), a cell-surface member of the immunoglobulin superfamily. MFE-23 contains an N-terminal variable heavy-chain domain joined by a (Gly(4)Ser)(3) linker to a variable light-chain (V(L)) domain (kappa chain) with an 11-residue C-terminal Myc-tag. Its crystal structure was determined at 2.4 A resolution by molecular replacement with an R(cryst) of 19.0%. Five of the six antigen-binding loops, L1, L2, L3, H1 and H2, conformed to known canonical structures. The sixth loop, H3, displayed a unique structure, with a beta-hairpin loop and a bifurcated apex characterized by a buried Thr residue. In the crystal lattice, two MFE-23 molecules were associated back-to-back in a manner not seen before. The antigen-binding site displayed a large acidic region located mainly within the H2 loop and a large hydrophobic region within the H3 loop. Even though this structure is unliganded within the crystal, there is an unusually large region of contact between the H1, H2 and H3 loops and the beta-sheet of the V(L) domain of an adjacent molecule (strands DEBA) as a result of intermolecular packing. These interactions exhibited remarkably high surface and electrostatic complementarity. Of seven MFE-23 residues predicted to make contact with antigen, five participated in these lattice contacts, and this model for antigen binding is consistent with previously reported site-specific mutagenesis of MFE-23 and its effect on CEA binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220881PMC

Publication Analysis

Top Keywords

crystal structure
8
single-chain antibody
8
model antigen
8
antigen binding
8
mfe-23
6
antigen
5
crystal
4
structure anti-carcinoembryonic
4
anti-carcinoembryonic antigen
4
antigen single-chain
4

Similar Publications

Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified.

View Article and Find Full Text PDF

The scarcity of approaches to assembling copper nanoclusters (Cu NCs) has restricted advancements in Cu NCs research, largely due to stability challenges of the individual NCs. By utilizing the structural adaptability of Cu NCs, we systematically investigate how variations in organic linkers and solvents affect the cluster node size, shape, and their assembling dimensionality. Here, we introduce a facile, one-pot synthesis method for obtaining a range of crystalline Cu cluster-assembled materials (CAMs) through a liquid-liquid interfacial crystallization technique.

View Article and Find Full Text PDF

O3-type NaNiMnO cathode material exhibits significant potential for sodium-ion batteries (SIBs) owing to its high theoretical capacity and ample sodium reservoir. Nonetheless, its practical implementation encounters considerable obstacles, such as impaired structural integrity, sensitivity to moisture, inadequate high-temperature stability, and being unstable under high-voltage conditions. This study investigates the co-substitution of Cu, Mg, and Ti, guided by principles of the periodic law, to enhance the material's stability under varying conditions.

View Article and Find Full Text PDF

Palladium-catalyzed reactions between imidazo[1,2-]pyridine derivatives and 4-bromo-2,2-dialkyl-substituted 2-chromenes under microwave irradiation at 100 W, 120 °C for 20-30 min provided a series of new 3-(2,2-dialkyl-2-chromen-4-yl)-2-phenylimidazo[1,2-]pyridine derivatives in good to excellent yields. The structures of the synthesized compounds were confirmed through spectroscopic techniques (NMR and HRMS). The X-ray single-crystal structure of compound 16e was also determined.

View Article and Find Full Text PDF

An overloaded pure silica zeolite ISV synthesized using a phosphonium cation.

Dalton Trans

January 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.

A pure silica zeolite with structure was synthesized using the tricyclopentylmethylphosphonium (CpMP) cation under fluoride media. Analysis of the organic content in the zeolite suggested the presence of more than four cations per unit cell, while fluoride anions were exclusively located in the four double four-membered rings of the structure. Si solid-state NMR demonstrated a significant concentration of Si species, , S̲i̲(OSi)(OH), in the structure, which afforded charge balance but contrasted with the most common observation of defect-free pure silica zeolites prepared in fluoride media at near-neutral pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!