Human immunodeficiency viruses encode a homodimeric protease that is essential for the production of infectious virus. Previous studies have shown that HIV-1 protease is susceptible to oxidative inactivation at the dimer interface at Cys-95, a process that can be reversed both chemically and enzymically. Here we demonstrate a related yet distinct mechanism of reversible inactivation of the HIV-2 protease. Exposure of the HIV-2 protease to H(2)O(2) resulted in conversion of the two methionine residues (Met-76 and Met-95) to methionine sulphoxide as determined by amino acid analysis and mass spectrometry. This oxidation completely inactivated protease activity. However, the activity could be restored (up to 40%) after exposure of the oxidized protease to methionine sulphoxide reductase. This treatment resulted in the reduction of methionine sulphoxide 95 but not methionine sulphoxide 76 to methionine, as determined by peptide mapping/mass spectrometry. We also found that exposure of immature HIV-2 particles to H(2)O(2) led to the inhibition of polyprotein processing in maturing virus particles comparable to that demonstrated for HIV-1 particles. Thus oxidative inactivation of the HIV protease in vitro and in maturing viral particles is not restricted to the type 1 proteases. These studies indicate that two distinct retroviral proteases are susceptible to inactivation after a very minor modification at residue 95 of the dimer interface and suggest that the dimer interface might be a viable target for the development of novel protease inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220854PMC

Publication Analysis

Top Keywords

methionine sulphoxide
20
dimer interface
16
hiv-2 protease
12
sulphoxide reductase
8
protease
8
oxidative inactivation
8
sulphoxide methionine
8
methionine
7
sulphoxide
5
hiv-2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!