Recently, several experiments have indicated that the left and right prefrontal cortex (PFC) are differently involved in emotional processing. The aim of this study was to investigate the role of the left and right PFC in selective attention to angry faces by using a pictorial emotional Stroop task. Slow repetitive transcranial magnetic stimulation (rTMS) was applied to the left and right PFC of 10 female subjects for 15 min on separate days. Results showed a significant effect of stimulation position: right PFC rTMS resulted in selective attention towards angry faces, whereas left PFC rTMS resulted in selective attention away from angry faces. This finding is in accordance with theoretical accounts of the neural implementation of approach and withdrawal systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3940(00)00781-3DOI Listing

Publication Analysis

Top Keywords

selective attention
16
left pfc
12
attention angry
12
angry faces
12
repetitive transcranial
8
transcranial magnetic
8
magnetic stimulation
8
prefrontal cortex
8
female subjects
8
pfc rtms
8

Similar Publications

In the context of regenerative medicine, the design of scaffolds to possess excellent osteogenesis and appropriate mechanical properties has gained significant attention in bone tissue engineering. In this review, we categorized materials into metallic, inorganic, nonmetallic, organic polymer, and composite materials. This review provides a more integrated and multidimensional analysis of scaffold design for bone tissue engineering.

View Article and Find Full Text PDF

Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties.

View Article and Find Full Text PDF

Noninvasive imaging of β-amyloid is pivotal for the early diagnosis of Alzheimer's disease (AD). While single imaging methods have been extensively studied for detecting Aβ over the past decade, dual-modal probes have received scant attention. In this study, we synthesized and assessed a series of half-curcumin probes, among which demonstrated a high affinity and selectivity for Aβ aggregates.

View Article and Find Full Text PDF

Strengthening serological studies: the need for greater geographical diversity, biobanking, and data-accessibility.

Trends Microbiol

January 2025

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA.

Serological studies uniquely strengthen infectious disease surveillance, expanding prevalence estimates to encompass asymptomatic infections, and revealing the otherwise inapparent landscape of immunity, including who is and is not susceptible to infection. They are thus a powerful complement to often incomplete epidemiological and public health measures (administrative measures of vaccination coverage, incidence estimates, etc.).

View Article and Find Full Text PDF

Background: Persons with intellectual and/or developmental disabilities (IDD) are a growing population, frequently living with complex health conditions and unmet healthcare needs. Traditional clinical practice and research methods and measures may require adaptation to reflect their preferences.

Objective: The perspectives of people with IDD, caregivers/partners, and clinicians were obtained to provide insight into factors contributing to the health and wellness of people with IDD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!