Modulation of N-type calcium channels translocation in RINm5F insulinoma cells.

Pharmacol Res

Department of Medical Pharmacology, CNR Molecular and Cellular Pharmacology Center, University of Milan, Milan, 20129, Italy.

Published: March 2000

AI Article Synopsis

  • Researchers have found that N-type voltage-operated calcium channels accumulate within secretory granules in neuroblastoma and pheochromocytoma cells.
  • Upon exocytosis, these channels can be temporarily inserted into the plasma membrane, indicating their role in neurotransmitter secretion.
  • In rat insulinoma cells, stimulation of exocytosis coincides with the recruitment of calcium channels at the cell surface, highlighting their importance in regulating calcium influx during secretion.

Article Abstract

An intracellular pool of N-type voltage-operated calcium channels has recently been described in both IMR32 human neuroblastoma and PC12 rat pheochromocytoma cells. These channels were found to be accumulated in subcellular fractions where the chromogranin B-containing secretory granules were also enriched. Upon exocytosis N-type calcium channels were reversibly inserted in the plasma membrane. We have now extended this study to RINm5F rat insulinoma cells, and characterized the parallelism between the 'regulated' secretion of serotonin and the recruitment of surface calcium channels. Exocytosis was stimulated by different means, such as depolarization with high KCl, high Ba(2+)alone or protein kinase C activation; on the other hand exocytosis was inhibited with the non-selective calcium channel antagonist Cd(2+)or with noradrenaline. Stimulated release was always accompanied, with parallel kinetics, by calcium channel recruitment, while inhibition of secretion blocked calcium channel recruitment too. During repetitive depolarizations we revealed a potentiation of [Ca(2+)]()i transients in single Fura-2 loaded RINm5F cells, that was accompanied by an increase in surface VOCCs, suggesting a physiological role for the newly recruited channels. 2000 Academic Press@p$hr

Download full-text PDF

Source
http://dx.doi.org/10.1006/phrs.1999.0590DOI Listing

Publication Analysis

Top Keywords

calcium channels
16
calcium channel
12
n-type calcium
8
insulinoma cells
8
channel recruitment
8
calcium
7
channels
6
modulation n-type
4
channels translocation
4
translocation rinm5f
4

Similar Publications

Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.

Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.

View Article and Find Full Text PDF

Inactivation of CaV1 and CaV2 channels.

J Gen Physiol

March 2025

Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.

Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways.

View Article and Find Full Text PDF

The role of rodent behavioral models of schizophrenia in the ongoing search for novel antipsychotics.

Expert Opin Drug Discov

January 2025

Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México.

Introduction: Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic.

Areas Covered: The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation.

View Article and Find Full Text PDF

The NMDAR-BK channelosomes as regulators of synaptic plasticity.

Biochem Soc Trans

January 2025

Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.

Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!