The adsorption behavior of bovine serum albumin (BSA) on a Sepharose based hydrophobic interaction support has been studied. Flow microcalorimetry has been used to determine the heat of adsorption under overloaded chromatographic conditions. These data have been complemented with capacity factor and isotherm measurements to provide insight on the mechanisms of adsorption. The heat of adsorption data have confirmed that the hydrophobic interaction adsorption of BSA under linear isotherm conditions is driven by entropy changes. Under overloaded (non-linear) conditions, however, it has been shown that the changes in enthalpy can drive adsorption; this behavior is not evident from analyses of capacity factor data. It is postulated that for BSA adsorption on the Sepharose derivative of interest, attractive force interactions between adsorbed protein molecules drive the adsorption process under overloaded conditions in a high (NH4)2SO4 environment. It is further postulated that these interactions are due to a change in confirmation of the adsorbed protein under these conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9673(99)01118-8DOI Listing

Publication Analysis

Top Keywords

hydrophobic interaction
12
adsorption
9
interaction adsorption
8
bovine serum
8
serum albumin
8
overloaded conditions
8
flow microcalorimetry
8
adsorption behavior
8
heat adsorption
8
capacity factor
8

Similar Publications

Design of pH-responsive and amphiphilic pullulan-based biological macromolecule for gene delivery.

Int J Biol Macromol

January 2025

Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:

Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.

View Article and Find Full Text PDF

Exploiting CotA laccase from Antarctic Bacillus sp. PAMC28748 for efficient mediator-assisted dye decolorization and ABTS regeneration.

Chemosphere

January 2025

Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea; Genome-based Bio-IT Convergence Institute, Asan, 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea. Electronic address:

Laccases are of particular interest in addressing environmental challenges, such as the degradation of triphenylmethane (TPM) dyes, including crystal violet (CV) and Coomassie Brilliant Blue (CBB), which are commonly used in SDS-PAGE for protein visualization. However, these dyes present significant environmental concerns due to their resistance to degradation, which makes their removal from industrial wastewater a major challenge. To address this, the current study investigates the potential of a novel CotA laccase derived from Bacillus sp.

View Article and Find Full Text PDF

The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells.

Redox Biol

January 2025

Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile. Electronic address:

Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC).

View Article and Find Full Text PDF

This study investigated the interactions between Capsaicinoids (CAPs) and beef myofibrillar proteins (MPs) in a peroxyl radical system and elucidated the antioxidant mechanisms of CAPs by multispectral and molecular docking. Results showed that low concentration CAPs prevented the oxidative changes of protein structure caused by the attack of AAPH radicals on MPs, while high concentration of CAPs changed the structure of the proteins to form more small molecule aggregates, and reduce the binding of actin-myosin, which was conducive to the tenderization of the meats. CAPs bound to the MPs through hydrophobic interaction, hydrogen bonding and electrostatic interaction, altering the secondary and tertiary structure of MPs, increasing the α-helix content of MPs, and improving the antioxidant structural stability of MPs.

View Article and Find Full Text PDF

Enhanced mRNA delivery via incorporating hydrophobic amines into lipid nanoparticles.

Colloids Surf B Biointerfaces

January 2025

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

Lipid nanoparticles (LNPs) have shown promising performance in mRNA delivery. Nevertheless, a thorough understanding of the relationship between mRNA delivery efficacy and the structure of LNPs remains imperative. In this study, we systematically investigated the effects of additional hydrophobic amines on the physicochemical properties of mRNA LNPs and their delivery efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!